On the effect of particle update modes in particle swarm optimisation

被引:0
|
作者
Dong, Nanjiang [1 ]
Wang, Rui [1 ]
Zhang, Tao [1 ]
Ou, Junwei [1 ]
机构
[1] Natl Univ Def Technol, Coll Syst Engn, Changsha, Peoples R China
基金
中国国家自然科学基金;
关键词
evolutionary computation; particle swarm optimisation; PSO; population size; multi-objective optimisation; DISTANCE;
D O I
10.1504/IJBIC.2023.132784
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Particle swarm optimisation has been successfully applied in various single- and multi-objective optimisation problems. Through the literature review, it is shown that in PSO-based algorithms particles are updated mainly in two different modes. Specifically, the first mode denoted as PSO-a uses random vectors in [0, 1](n) in the particle update process. The second mode denoted as PSO-b uses random variables in [0, 1]. This study systematically analysed the effect of different modes on a varied set of benchmarks. Experimental results show that the PSO-a mode is more suitable for single-objective optimisation while the PSO-b has certain advantages for multi-objective optimisation due to the regularity of multi-objective problems. Also, the introduction of a mutation operator into PSO-b can overcome the limit of dimension. Moreover, to guarantee finding the optimal solution, the swarm size must be larger than the problem dimensionality when PSO-b is purely adopted.
引用
收藏
页码:230 / 239
页数:11
相关论文
共 50 条
  • [31] Particle Swarm Optimisation for Protein Motif Discovery
    Bill C. H. Chang
    Asanga Ratnaweera
    Saman K. Halgamuge
    Harry C. Watson
    Genetic Programming and Evolvable Machines, 2004, 5 (2) : 203 - 214
  • [32] Fitness estimation and the particle swarm optimisation algorithm
    Hendtlass, Tim
    2007 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-10, PROCEEDINGS, 2007, : 4266 - 4272
  • [33] Parameter selection in particle swarm optimisation: a survey
    Jordehi, A. Rezaee
    Jasni, J.
    JOURNAL OF EXPERIMENTAL & THEORETICAL ARTIFICIAL INTELLIGENCE, 2013, 25 (04) : 527 - 542
  • [34] Particle Swarm Optimisation with Enhanced Memory Particles
    Broderick, Ian
    Howley, Enda
    SWARM INTELLIGENCE, ANTS 2014, 2014, 8667 : 254 - 261
  • [35] The application of particle swarm optimisation in organisational behaviour
    Zeng, J. (zengjianchao@263.net), 1600, Inderscience Enterprises Ltd., 29, route de Pre-Bois, Case Postale 856, CH-1215 Geneva 15, CH-1215, Switzerland (06):
  • [36] A Taxonomy of Heterogeneity and Dynamics in Particle Swarm Optimisation
    Goldingay, Harry
    Lewis, Peter R.
    PARALLEL PROBLEM SOLVING FROM NATURE - PPSN XIII, 2014, 8672 : 171 - 180
  • [37] Nonlinear mapping using particle swarm optimisation
    Edwards, AI
    Engelbrecht, AP
    Franken, N
    2005 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-3, PROCEEDINGS, 2005, : 306 - 313
  • [38] Particle Swarm Optimisation for learning Bayesian Networks
    Cowie, J.
    Oteniya, L.
    Coles, R.
    WORLD CONGRESS ON ENGINEERING 2007, VOLS 1 AND 2, 2007, : 71 - +
  • [39] Discrete particle swarm optimisation for ontology alignment
    Bock, Juergen
    Hettenhausen, Jan
    INFORMATION SCIENCES, 2012, 192 : 152 - 173
  • [40] A novel particle swarm optimisation with mutation breeding
    Liu, Zhe
    Han, Fei
    Ling, Qing-Hua
    CONNECTION SCIENCE, 2020, 32 (04) : 333 - 361