Invertible Kernel PCA With Random Fourier Features

被引:6
作者
Gedon, Daniel [1 ]
Ribeiro, Antonio H. [1 ]
Wahlstrom, Niklas [1 ]
Schon, Thomas B. [1 ]
机构
[1] Uppsala Univ, Dept Informat Technol, Uppsala 75105, Sweden
基金
瑞典研究理事会;
关键词
Principal component analysis; Kernel; Image reconstruction; Dimensionality reduction; Noise reduction; Electrocardiography; Toy manufacturing industry; Denoising; ECG; Index Terms; kernel PCA; pre-image; random Fourier features; reconstruction;
D O I
10.1109/LSP.2023.3275499
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Kernel principal component analysis (kPCA) is a widely studied method to construct a low-dimensional data representation after a nonlinear transformation. The prevailing method to reconstruct the original input signal from kPCA-an important task for denoising-requires us to solve a supervised learning problem. In this paper, we present an alternative method where the reconstruction follows naturally from the compression step. We first approximate the kernel with random Fourier features. Then, we exploit the fact that the nonlinear transformation is invertible in a certain subdomain. Hence, the name invertible kernel PCA (ikPCA). We experiment with different data modalities and show that ikPCA performs similarly to kPCA with supervised reconstruction on denoising tasks, making it a strong alternative.
引用
收藏
页码:563 / 567
页数:5
相关论文
共 24 条
  • [1] [Anonymous], 2007, Advances in neural information processing systems
  • [2] Bakir GH, 2004, ADV NEUR IN, V16, P449
  • [3] Benign overfitting in linear regression
    Bartlett, Peter L.
    Long, Philip M.
    Lugosi, Gabor
    Tsigler, Alexander
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (48) : 30063 - 30070
  • [4] Julia: A Fresh Approach to Numerical Computing
    Bezanson, Jeff
    Edelman, Alan
    Karpinski, Stefan
    Shah, Viral B.
    [J]. SIAM REVIEW, 2017, 59 (01) : 65 - 98
  • [5] AUTO-ASSOCIATION BY MULTILAYER PERCEPTRONS AND SINGULAR VALUE DECOMPOSITION
    BOURLARD, H
    KAMP, Y
    [J]. BIOLOGICAL CYBERNETICS, 1988, 59 (4-5) : 291 - 294
  • [6] Burges C. J. C., 1996, Machine Learning. Proceedings of the Thirteenth International Conference (ICML '96), P71
  • [7] Principal component analysis in ECG signal processing
    Castells, Francisco
    Laguna, Pablo
    Soernmo, Leif
    Bollmann, Andreas
    Roig, José Millet
    [J]. EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2007, 2007 (1)
  • [8] Noise Reduction in ECG Signals Using Fully Convolutional Denoising Autoencoders
    Chiang, Hsin-Tien
    Hsieh, Yi-Yen
    Fu, Szu-Wei
    Hung, Kuo-Hsuan
    Tsao, Yu
    Chien, Shao-Yi
    [J]. IEEE ACCESS, 2019, 7 : 60806 - 60813
  • [9] Hinton G. E., 1993, P ADV NEUR INF PROC, P3
  • [10] Johnstone IM, 2009, J AM STAT ASSOC, V104, P682, DOI 10.1198/jasa.2009.0121