Local well-posedness to the thermal boundary layer equations in Sobolev space

被引:0
作者
Zou, Yonghui [1 ]
Xu, Xin [1 ]
Gao, An [2 ]
机构
[1] Ocean Univ China, Sch Math Sci, Qingdao 266100, Peoples R China
[2] Linyi Sr Sch Finance & Econ, Linyi 276000, Peoples R China
来源
AIMS MATHEMATICS | 2023年 / 8卷 / 04期
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
thermal boundary layer equations; Oleinik's monotonicity condition; local well-posedness; NAVIER-STOKES EQUATION; ZERO VISCOSITY LIMIT; PRANDTL EQUATION; ANALYTIC SOLUTIONS; GLOBAL EXISTENCE; ILL-POSEDNESS; HALF-SPACE; MONOTONICITY; STABILITY; BLOWUP;
D O I
10.3934/math.2023503
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the local well-posedness of the thermal boundary layer equations for the two-dimensional incompressible heat conducting flow with nonslip boundary condition for the velocity and Neumann boundary condition for the temperature. Under Oleinik's monotonicity assumption, we establish the local-in-time existence and uniqueness of solutions in Sobolev space for the boundary layer equations by a new weighted energy method developed by Masmoudi and Wong.
引用
收藏
页码:9933 / 9964
页数:32
相关论文
共 37 条
[1]  
Alexandre R, 2015, J AM MATH SOC, V28, P745
[2]  
Caflisch RE, 2000, Z ANGEW MATH MECH, V80, P733, DOI 10.1002/1521-4001(200011)80:11/12<733::AID-ZAMM733>3.0.CO
[3]  
2-L
[4]   Well-posedness of the Prandtl equation with monotonicity in Sobolev spaces [J].
Chen, Dongxiang ;
Wang, Yuxi ;
Zhang, Zhifei .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 264 (09) :5870-5893
[5]   Local well-posedness of solutions to the boundary layer equations for 2D compressible flow [J].
Fan, Long ;
Ruan, Lizhi ;
Yang, Anita .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 493 (02)
[6]   GEVREY STABILITY OF PRANDTL EXPANSIONS FOR 2-DIMENSIONAL NAVIER-STOKES FLOWS [J].
Gerard-Varet, David ;
Maekawa, Yasunori ;
Masmoudi, Nader .
DUKE MATHEMATICAL JOURNAL, 2018, 167 (13) :2531-2631
[7]  
Gérard-Varet D, 2010, J AM MATH SOC, V23, P591
[8]   Boundary layer problems for the two-dimensional compressible Navier-Stokes equations [J].
Gong, Shengbo ;
Guo, Yan ;
Wang, Ya-Guang .
ANALYSIS AND APPLICATIONS, 2016, 14 (01) :1-37
[9]   ON THE LOCAL WELL-POSEDNESS OF THE PRANDTL AND HYDROSTATIC EULER EQUATIONS WITH MULTIPLE MONOTONICITY REGIONS [J].
Kukavica, Igor ;
Masmoudi, Nader ;
Vicol, Vlad ;
Wong, Tak Kwong .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2014, 46 (06) :3865-3890
[10]   Almost global existence for 2D magnetohydrodynamics boundary layer system [J].
Lin, Xueyun ;
Zhang, Ting .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (17) :7530-7553