Stable homotopy groups of spheres: from dimension 0 to 90
被引:5
作者:
Isaksen, Daniel C.
论文数: 0引用数: 0
h-index: 0
机构:
Wayne State Univ, Dept Math, Detroit, MI 48202 USAWayne State Univ, Dept Math, Detroit, MI 48202 USA
Isaksen, Daniel C.
[1
]
Wang, Guozhen
论文数: 0引用数: 0
h-index: 0
机构:
Fudan Univ, Shanghai Ctr Math Sci, Shanghai 200433, Peoples R ChinaWayne State Univ, Dept Math, Detroit, MI 48202 USA
Wang, Guozhen
[2
]
Xu, Zhouli
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USAWayne State Univ, Dept Math, Detroit, MI 48202 USA
Xu, Zhouli
[3
]
机构:
[1] Wayne State Univ, Dept Math, Detroit, MI 48202 USA
[2] Fudan Univ, Shanghai Ctr Math Sci, Shanghai 200433, Peoples R China
[3] Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USA
来源:
PUBLICATIONS MATHEMATIQUES DE L IHES
|
2023年
/
137卷
/
01期
关键词:
KERVAIRE INVARIANT;
COHOMOLOGY;
ELEMENTS;
D O I:
10.1007/s10240-023-00139-1
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
Using techniques in motivic homotopy theory, especially the theorem of Gheorghe, the second and the third author on the isomorphism between motivic Adams spectral sequence for Cr and the algebraic Novikov spectral sequence for BP*, we compute the classical and motivic stable homotopy groups of spheres from dimension 0 to 90, except for some carefully enumerated uncertainties.