Manipulation of CO2 hydrogenation selectivity over RuSn/La2O2CO3 catalysts with intermetallic electron transfer

被引:6
作者
Li, Haocheng [1 ]
Ma, Bing [1 ]
Tian, Jingqing [1 ]
Zhao, Chen [1 ]
机构
[1] East China Normal Univ, Sch Chem & Mol Engn, Shanghai Key Lab Green Chem & Chem Proc, Shanghai 200062, Peoples R China
关键词
The reverse water-gas shift (RWGS); CO2; hydrogenation; Manipulate production selectivity; Blast furnace gas (BFG); WATER-GAS SHIFT; RU NANOPARTICLES; SUPPORT; METHANATION; CONVERSION; METHANOL; FUTURE; NANOCATALYSTS; KINETICS; TIO2;
D O I
10.1016/j.cej.2023.142572
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Selective hydrogenation of CO2 to syngas via the reverse water-gas shift (RWGS) route provides an effective strategy to achieve low-carbon development. While CO2 methanation to CH4 takes place readily on Ru metal, the selective hydrogenation of CO2 to CO in Ru-catalysts remains a challenge. In this work, we prepared a Ru-Sn/ La2O2CO3 catalytic system allowing over 99% selectivity of CO during CO2 hydrogenation at 400 degrees C. Charac-terization revealed that the transfer of electrons from Sn to Ru weakened the dissociation ability of H-2 while improving the adsorption ability of O on Ru. The former inhibited the formation of methane, while the latter caused the C-O bond energy of CO2 adsorbed at the Ru-Sn interface to decrease and dissociate at the Ru-side, forming Ru-CO* and Ru-O*; thus, realizing the RWGS process. An ultra-low Ru-loaded (0.01 wt%) RuSn/ La2O2CO3 catalyst with strong metal-support interactions achieved a CO2 hydrogenation rate at 10(3) times higher than the best reported data. This catalyst was successfully applied to the hydrogenation of blast furnace gas (BFG) to syngas, showing a CO formation rate as high as 2.3*10(6) mmolCO.gRu(- 1).h(-1) and remaining stable at 850 degrees C for 1000 h.
引用
收藏
页数:14
相关论文
共 54 条
[31]   In Situ Dispersion of Palladium on TiO2 During Reverse Water-Gas Shift Reaction: Formation of Atomically Dispersed Palladium [J].
Nelson, Nicholas C. ;
Chen, Linxiao ;
Meira, Debora ;
Kovarik, Libor ;
Szanyi, Janos .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (40) :17657-17663
[32]   Methanation of CO2 over alkali-promoted Ru/TiO2 catalysts: II. Effect of alkali additives on the reaction pathway [J].
Panagiotopoulou, Paraskevi .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2018, 236 :162-170
[33]  
Perdew JP, 1996, PHYS REV LETT, V77, P3865, DOI 10.1103/PhysRevLett.77.3865
[34]   Heterogeneous and homogeneous catalysis for the hydrogenation of carboxylic acid derivatives: history, advances and future directions [J].
Pritchard, James ;
Filonenko, Georgy A. ;
van Putten, Robbert ;
Hensen, Emiel J. M. ;
Pidko, Evgeny A. .
CHEMICAL SOCIETY REVIEWS, 2015, 44 (11) :3808-3833
[35]   CO2 methanation on Ru-doped ceria [J].
Sharma, Sudhanshu ;
Hu, Zhenpeng ;
Zhang, Peng ;
McFarland, Eric W. ;
Metiu, Horia .
JOURNAL OF CATALYSIS, 2011, 278 (02) :297-309
[36]   Powering the Future with Liquid Sunshine [J].
Shih, Choon Fong ;
Zhang, Tao ;
Li, Jinghai ;
Bai, Chunli .
JOULE, 2018, 2 (10) :1925-1949
[37]  
Su L., 2023, SMALL, V19
[38]   Designing of highly selective and high-temperature endurable RWGS heterogeneous catalysts: recent advances and the future directions [J].
Su, Xiong ;
Yang, Xiaoli ;
Zhao, Bo ;
Huang, Yanqiang .
JOURNAL OF ENERGY CHEMISTRY, 2017, 26 (05) :854-867
[39]   Ni/Ce-Zr-O catalyst for high CO2 conversion during reverse water gas shift reaction (RWGS) [J].
Sun, Feng-man ;
Yan, Chang-feng ;
Wang, Zhi-da ;
Guo, Chang-qing ;
Huang, Shi-lin .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2015, 40 (46) :15985-15993
[40]   Ru-Catalyzed Reverse Water Gas Shift Reaction with Near-Unity Selectivity and Superior Stability [J].
Tang, Rui ;
Zhu, Zhijie ;
Li, Chaoran ;
Xiao, Mengqi ;
Wu, Zhiyi ;
Zhang, Dake ;
Zhang, Chengcheng ;
Xiao, Yi ;
Chu, Mingyu ;
Genest, Alexander ;
Rupprechter, Guenther ;
Zhang, Liang ;
Zhang, Xiaohong ;
He, Le .
ACS MATERIALS LETTERS, 2021, 3 (12) :1652-1659