Predicting the hydraulic conductivity of compacted soil barriers in landfills using machine learning techniques

被引:15
作者
Tan, Yu [1 ]
Zhang, Poyu [2 ]
Chen, Jiannan [2 ,6 ]
Shamet, Ryan [3 ]
Nam, Boo Hyun [4 ]
Pu, Hefu [5 ]
机构
[1] Univ Wisconsin, Civil & Environm Engn, Madison, WI 53706 USA
[2] Univ Cent Florida, Civil Environ & Const Engn, Orlando, FL 32816 USA
[3] Univ North Florida, Civil Engn, Jacksonville, FL 32224 USA
[4] Kyung Hee Univ, Dept Civil Engn, Seoul 02447, South Korea
[5] Huazhong Univ Sci & Technol, Civil & Hydraul Engr, Wuhan 430074, Peoples R China
[6] 12800 Pegasus Dr 211, Orlando, FL 32816 USA
关键词
Machine learning; Multiple regression; Hydraulic conductivity prediction; Compacted soil barriers; Landfill liner; Landfill cover; ARTIFICIAL NEURAL-NETWORK; BENTONITE-SAND MIXTURES; CLAY LINERS; FIELD PERFORMANCE; FINAL COVER; PARAMETERS; TRANSPORT; TREES;
D O I
10.1016/j.wasman.2023.01.003
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Machine learning models (MLMs) were developed to predict saturated hydraulic conductivity of compacted soil barriers and help to identify appropriate soils for the construction of landfill liners and covers. Data from hy-draulic conductivity tests on compacted soil barriers were collected from the literature and compiled into a database for MLM construction. The database contains 329 records of hydraulic conductivity tests associated with 12 selected impact factors covering physical properties, compaction efforts, and hydration and mineralogy behaviors of compacted soil barriers. Three machine learning algorithms (random forest, gradient boosting decision tree, and neural network) were used to develop MLMs, and a statistical technique (multiple linear regression) was used to compare the precision of predictions with the MLMs. Results from this study showed that the random forest model provided the best prediction of the hydraulic conductivity of compacted soil barriers, with 100% of predicted hydraulic conductivity within 100-time differences to measured hydraulic conductivity and 93% within 10-time differences. Feature importance analysis showed that void ratio after compaction, fines content, specific gravity, degree of saturation after compaction, and plasticity index of soils are the top-five factors (in descending order) that influence the hydraulic conductivity of compacted soil barriers and are rec-ommended for a precise prediction. Three predictive MLMs were created for industries as simple tools to screen the soils prior to the construction of compacted soil barriers in landfill liners and covers.
引用
收藏
页码:357 / 366
页数:10
相关论文
共 50 条
  • [41] Predicting exclusive breastfeeding in maternity wards using machine learning techniques
    Oliver-Roig, Antonio
    Ramon Rico-Juan, Juan
    Richart-Martinez, Miguel
    Cabrero-Garcia, Julio
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2022, 221
  • [42] Predicting genetic merit in Harnali sheep using machine learning techniques
    Spandan Shashwat Dash
    Yogesh C. Bangar
    Ankit Magotra
    C. S. Patil
    Tropical Animal Health and Production, 2025, 57 (5)
  • [43] Data Balancing Techniques for Predicting Student Dropout Using Machine Learning
    Mduma, Neema
    DATA, 2023, 8 (03)
  • [44] Predicting the Outcome of Patients With Subarachnoid Hemorrhage Using Machine Learning Techniques
    de Toledo, Paula
    Rios, Pablo M.
    Ledezma, Agapito
    Sanchis, Araceli
    Alen, Jose F.
    Lagares, Alfonso
    IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, 2009, 13 (05): : 794 - 801
  • [45] Predicting Resource Utilization for Cloud Workloads Using Machine Learning Techniques
    Adane, Padma D.
    Kakde, O. G.
    PROCEEDINGS OF THE 2018 SECOND INTERNATIONAL CONFERENCE ON INVENTIVE COMMUNICATION AND COMPUTATIONAL TECHNOLOGIES (ICICCT), 2018, : 1372 - 1376
  • [46] Predicting Suicidal Behaviors in Individuals With Diabetes Using Machine Learning Techniques
    Mamun, Mohammed A.
    Al-Mamun, Firoj
    Hasan, Md Emran
    Roy, Nitai
    ALmerab, Moneerah Mohammad
    Muhit, Mohammad
    Moonajilin, Mst. Sabrina
    PERSPECTIVES IN PSYCHIATRIC CARE, 2024, 2024
  • [47] Predicting Academic Success of College Students Using Machine Learning Techniques
    Guanin-Fajardo, Jorge Humberto
    Guana-Moya, Javier
    Casillas, Jorge
    DATA, 2024, 9 (04)
  • [48] Predicting the Overflowing of Urban Personholes Based on Machine Learning Techniques
    Chang, Ya-Hui
    Tseng, Chih-Wei
    Hsu, Hsien-Chieh
    WATER, 2023, 15 (23)
  • [49] Predicting Ionic Conductivity in Thin Films of Garnet Electrolytes Using Machine Learning
    Kireeva, Natalia
    Tsivadze, Aslan Yu.
    Pervov, Vladislav S.
    BATTERIES-BASEL, 2023, 9 (09):
  • [50] Predicting wetland soil properties using machine learning, geophysics, and soil measurement data
    Driba, Dejene L.
    Emmanuel, Efemena D.
    Doro, Kennedy O.
    JOURNAL OF SOILS AND SEDIMENTS, 2024, 24 (06) : 2398 - 2415