Reaction-diffusion fronts in funnel-shaped domains

被引:2
|
作者
Hamel, Francois [1 ]
Zhang, Mingmin [1 ,2 ,3 ]
机构
[1] Aix Marseille Univ, CNRS, Cent Marseille, I2M, Marseille, France
[2] Univ Sci & Technol China, Sch Math Sci, Hefei 230026, Anhui, Peoples R China
[3] CNRS, Inst Math Toulouse, UMR 5219, F-31062 Toulouse, France
关键词
Reaction-diffusion equations; Transition fronts; Blocking; Spreading; Propagation; Liouville type results; BISTABLE TRANSITION FRONTS; TRAVELING-WAVE SOLUTIONS; PROPAGATION; EXISTENCE; CYLINDER; NONEXISTENCE; EQUATIONS; BOUNDARY;
D O I
10.1016/j.aim.2022.108807
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider bistable reaction-diffusion equations in funnel -shaped domains of RN made up of straight parts and conical parts with positive opening angles. We study the large time dynamics of entire solutions emanating from a planar front in the straight part of such a domain and moving into the conical part. We show a dichotomy between blocking and spreading, by proving especially some new Liouville type results on stable solutions of semilinear elliptic equations in the whole space RN. We also show that any spreading solution is a transition front having a global mean speed, which is the unique speed of planar fronts, and that it converges at large time in the conical part of the domain to a well-formed front whose position is approximated by expanding spheres. Moreover, we provide sufficient conditions on the size R of the straight part of the domain and on the opening angle alpha of the conical part, under which the solution emanating from a planar front is blocked or spreads completely in the conical part. We finally show the openness of the set of parameters (R, alpha) for which the propagation is complete.(c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:56
相关论文
共 50 条
  • [1] FUNNEL-SHAPED LAYERED INTRUSIONS
    WAGER, LR
    BROWN, GM
    GEOLOGICAL SOCIETY OF AMERICA BULLETIN, 1957, 68 (08) : 1071 - 1074
  • [2] STABILITY OF REACTION-DIFFUSION FRONTS
    ZHANG, ZQ
    FALLE, SAEG
    PROCEEDINGS OF THE ROYAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1994, 446 (1928): : 517 - 528
  • [3] TRAVELING WAVE-FRONTS OF REACTION-DIFFUSION EQUATIONS IN CYLINDRICAL DOMAINS
    VEGA, JM
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1993, 18 (3-4) : 505 - 531
  • [4] THE HEART IN FUNNEL-SHAPED AND FLAT CHESTS
    MASTER, AM
    STONE, J
    AMERICAN JOURNAL OF THE MEDICAL SCIENCES, 1949, 217 (04): : 392 - 400
  • [5] Micropolar medium in a funnel-shaped crusher
    Mariia Fomicheva
    Elena N. Vilchevskaya
    Nikolay Bessonov
    Wolfgang H. Müller
    Continuum Mechanics and Thermodynamics, 2021, 33 : 1347 - 1362
  • [6] Micropolar medium in a funnel-shaped crusher
    Fomicheva, Mariia
    Vilchevskaya, Elena N.
    Bessonov, Nikolay
    Mueller, Wolfgang H.
    CONTINUUM MECHANICS AND THERMODYNAMICS, 2021, 33 (04) : 1347 - 1362
  • [7] SURGICAL TREATMENT OF FUNNEL-SHAPED CHEST
    THEVENET, A
    MARY, H
    ANNALES DE CHIRURGIE, 1977, 31 (03): : 189 - 191
  • [8] QUADRATIC AND CUBIC REACTION-DIFFUSION FRONTS
    SHOWALTER, K
    NONLINEAR SCIENCE TODAY, 1994, 4 (04): : 1 - 10
  • [9] Reaction-diffusion fronts and the butterfly set
    Cisternas, Jaime
    Rohe, Kevin
    Wehner, Stefan
    CHAOS, 2020, 30 (11)
  • [10] Propagating fronts in reaction-diffusion systems
    Vives, D
    Armero, J
    Marti, A
    Ramirez-Piscina, L
    Casademunt, J
    Sancho, JM
    Sagues, F
    JOURNAL OF MATHEMATICAL CHEMISTRY, 1998, 23 (1-2) : 239 - 260