Unravelling the Complex LiOH-Based Cathode Chemistry in Lithium-Oxygen Batteries

被引:14
作者
Zhang, Xiahui [1 ,3 ]
Dong, Panpan [1 ]
Noh, Seunghyo [2 ]
Zhang, Xianghui
Cha, Younghwan [1 ]
Ha, Su [3 ]
Jang, Ji-Hoon [2 ]
Song, Min-Kyu [1 ]
机构
[1] Washington State Univ, Sch Mech & Mat Engn, Pullman, WA 99164 USA
[2] Hyundai Motor Co, R&D Div, Mat Res & Engn Ctr, 16082, Uiwang, South Korea
[3] Washington State Univ, Voiland Sch Chem Engn & Bioengn, Pullman, WA 99164 USA
关键词
Ab Initio Calculations; Four-Electron Oxygen Reduction; Isotopic Labeling; LiOH-Based Cathode Chemistry; Lithium-Oxygen Batteries; Reactive Oxygen Species; LI-O-2; BATTERIES; CYCLE-LIFE; PERFORMANCE; WATER; REDUCTION; PRODUCTS; IODIDE; IONS;
D O I
10.1002/anie.202212942
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The LiOH-based cathode chemistry has demonstrated potential for high-energy Li-O-2 batteries. However, the understanding of such complex chemistry remains incomplete. Herein, we use the combined experimental methods with ab initio calculations to study LiOH chemistry. We provide a unified reaction mechanism for LiOH formation during discharge via net 4 e(-) oxygen reduction, in which Li2O2 acts as intermediate in low water-content electrolyte but LiHO2 as intermediate in high water-content electrolyte. Besides, LiOH decomposes via 1 e(-) oxidation during charge, generating surface-reactive hydroxyl species that degrade organic electrolytes and generate protons. These protons lead to early removal of LiOH, followed by a new high-potential charge plateau (1 e(-) water oxidation). At following cycles, these accumulated protons lead to a new high-potential discharge plateau, corresponding to water formation. Our findings shed light on understanding of 4 e(-) cathode chemistries in metal-air batteries.
引用
收藏
页数:14
相关论文
共 55 条
[1]  
Aetukuri NB, 2015, NAT CHEM, V7, P50, DOI [10.1038/nchem.2132, 10.1038/NCHEM.2132]
[2]   A lithium-oxygen battery with a long cycle life in an air-like atmosphere [J].
Asadi, Mohammad ;
Sayahpour, Baharak ;
Abbasi, Pedram ;
Ngo, Anh T. ;
Karis, Klas ;
Jokisaari, Jacob R. ;
Liu, Cong ;
Narayanan, Badri ;
Gerard, Marc ;
Yasaei, Poya ;
Hu, Xuan ;
Mukherjee, Arijita ;
Lau, Kah Chun ;
Assary, Rajeev S. ;
Khalili-Araghi, Fatemeh ;
Klie, Robert F. ;
Curtiss, Larry A. ;
Salehi-Khojin, Amin .
NATURE, 2018, 555 (7697) :502-+
[3]  
Aurbach D, 2016, NAT ENERGY, V1, DOI [10.1038/nenergy.2016.128, 10.1038/NENERGY.2016.128]
[4]   Screening for Superoxide Reactivity in Li-O2 Batteries: Effect on Li2O2/LiOH Crystallization [J].
Black, Robert ;
Oh, Si Hyoung ;
Lee, Jin-Hyon ;
Yim, Taeeun ;
Adams, Brian ;
Nazar, Linda F. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (06) :2902-2905
[5]  
Bruce PG, 2012, NAT MATER, V11, P19, DOI [10.1038/NMAT3191, 10.1038/nmat3191]
[6]  
Carey F. A., 2007, Advanced Organic Chemistry: Part A: Structure and Mechanisms
[7]   From Lithium-Oxygen to Lithium-Air Batteries: Challenges and Opportunities [J].
Geng, Dongsheng ;
Ding, Ning ;
Hor, T. S. Andy ;
Chien, Sheau Wei ;
Liu, Zhaolin ;
Wuu, Delvin ;
Sun, Xueliang ;
Zong, Yun .
ADVANCED ENERGY MATERIALS, 2016, 6 (09)
[8]  
Haynes W.M, 2016, CRC Handbook of Chemistry and Physics, V97th, DOI DOI 10.1201/9781315380476
[9]   Superassembly of Porous Fetet(NiFe)octO Frameworks with Stable Octahedron and Multistage Structure for Superior Lithium-Oxygen Batteries [J].
He, Biao ;
Wang, Jun ;
Liu, Jiaqing ;
Li, Yong ;
Huang, Qishun ;
Hou, Yue ;
Li, Gaoyang ;
Li, Jiajia ;
Zhang, Runhao ;
Zhou, Junjie ;
Tian, Wei ;
Du, Yong ;
Dang, Feng ;
Wang, Hongchao ;
Kong, Biao .
ADVANCED ENERGY MATERIALS, 2020, 10 (21)
[10]  
Johnson L, 2014, NAT CHEM, V6, P1091, DOI [10.1038/NCHEM.2101, 10.1038/nchem.2101]