Physiological, epigenetic, and proteomic responses in Pfaffia glomerata growth in vitro under salt stress and 5-azacytidine

被引:5
|
作者
Fortini, Evandro Alexandre [1 ]
Batista, Diego Silva [2 ]
Sousa Felipe, Sergio Heitor [3 ]
Silva, Tatiane Dulcineia [1 ]
Freitas Correia, Ludmila Nayara [1 ]
Farias, Leticia Monteiro [4 ]
Faria, Daniele Vidal [1 ]
Pinto, Vitor Batista [5 ]
Santa-Catarina, Claudete [6 ]
Silveira, Vanildo [5 ]
De-la-Pena, Clelia [7 ]
Castillo-Castro, Eduardo [7 ]
Otoni, Wagner Campos [1 ]
机构
[1] Univ Fed Vicosa, Dept Biol Vegetal BIOAGRO, Lab Cultura Tecidos Vegetais LCTII, Campus Univ,Ave Peter Henry Rolfs S-N, BR-36570900 Vicosa, MG, Brazil
[2] Univ Fed Paraiba, Dept Agr, Campus III, BR-58220000 Bananeiras, PB, Brazil
[3] Univ Estadual Maranhao, PPG Agroecol, Av Lourenco Vieira Silva S-N,Cidade Univ Paulo VI, Sao Luis, MA, Brazil
[4] Univ Fed Vicosa, Dept Bioquim & Biol Mol, BR-36570900 Vicosa, MG, Brazil
[5] Univ Estadual Norte Fluminense Darcy Ribeiro UENF, Ctr Biociencias & Biotecnol CBB, Lab Biotecnol LBT, Av Alberto Lamego 2000, Campos Dos Goytacazes, RJ, Brazil
[6] CBB UENF, Lab Biol Celular & Tecidual LBCT, Campos Dos Goytacazes, RJ, Brazil
[7] AC CICY, Ctr Invest Cient Yucatan, Unidad Biotecnol, Merida 97205, Yucatan, Mexico
关键词
Proteomics; DNA methylation; Phytoecdysteroids; Methyltransferase inhibitor; Medicinal plant; Abiotic stress; 20-HYDROXYECDYSONE; PLANTS; BIOSYNTHESIS; TOLERANCE; ACCUMULATION; IMPROVEMENTS; METHYLATION; METABOLISM; MECHANISMS; PROLINE;
D O I
10.1007/s00709-022-01789-4
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Plants adjust their complex molecular, biochemical, and metabolic processes to overcome salt stress. Here, we investigated the proteomic and epigenetic alterations involved in the morphophysiological responses of Pfaffia glomerata, a medicinal plant, to salt stress and the demethylating agent 5-azacytidine (5-azaC). Moreover, we investigated how these changes affected the biosynthesis of 20-hydroxyecdysone (20-E), a pharmacologically important specialized metabolite. Plants were cultivated in vitro for 40 days in Murashige and Skoog medium supplemented with NaCl (50 mM), 5-azaC (25 mu M), and NaCl + 5-azaC. Compared with the control (medium only), the treatments reduced growth, photosynthetic rates, and photosynthetic pigment content, with increase in sucrose, total amino acids, and proline contents, but a reduction in starch and protein. Comparative proteomic analysis revealed 282 common differentially accumulated proteins involved in 87 metabolic pathways, most of them related to amino acid and carbohydrate metabolism, and specialized metabolism. 5-azaC and NaCl + 5-azaC lowered global DNA methylation levels and 20-E content, suggesting that 20-E biosynthesis may be regulated by epigenetic mechanisms. Moreover, downregulation of a key protein in jasmonate biosynthesis indicates the fundamental role of this hormone in the 20-E biosynthesis. Taken together, our results highlight possible regulatory proteins and epigenetic changes related to salt stress tolerance and 20-E biosynthesis in P. glomerata, paving the way for future studies of the mechanisms involved in this regulation.
引用
收藏
页码:467 / 482
页数:16
相关论文
共 50 条
  • [1] Physiological, epigenetic, and proteomic responses in Pfaffia glomerata growth in vitro under salt stress and 5-azacytidine
    Evandro Alexandre Fortini
    Diego Silva Batista
    Sérgio Heitor Sousa Felipe
    Tatiane Dulcineia Silva
    Ludmila Nayara Freitas Correia
    Letícia Monteiro Farias
    Daniele Vidal Faria
    Vitor Batista Pinto
    Claudete Santa-Catarina
    Vanildo Silveira
    Clelia De-la-Peña
    Eduardo Castillo-Castro
    Wagner Campos Otoni
    Protoplasma, 2023, 260 : 467 - 482
  • [2] Integrated transcriptomic and proteomic analysis revealed the regulatory role of 5-azacytidine in kenaf salt stress alleviation
    Luo, Dengjie
    Li, Zengqiang
    Mubeen, Samavia
    Rehman, Muzammal
    Cao, Shan
    Wang, Caijin
    Yue, Jiao
    Pan, Jiao
    Jin, Gang
    Li, Ru
    Chen, Tao
    Chen, Peng
    JOURNAL OF PROTEOMICS, 2024, 309
  • [3] Crucial roles of trehalose and 5-azacytidine in alleviating salt stress in tomato: Both synergistically and independently
    Yao, Yandong
    Yang, Yan
    Pan, Ying
    Liu, Zesheng
    Hou, Xuemei
    Li, Yihua
    Zhang, Hongsheng
    Wang, Chunlei
    Liao, Weibiao
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2023, 203
  • [4] Foliar Application of Silicon Influences the Physiological and Epigenetic Responses of Wheat Grown Under Salt Stress
    Tobiasz-Salach, Renata
    Stadnik, Barbara
    Mazurek, Marzena
    Buczek, Jan
    Leszczynska, Danuta
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (24)
  • [5] Physiological and antioxidant responses of cultivated and wild barley under salt stress
    Jabeen, Zahra
    Hussain, Nazim
    Irshad, Faiza
    Zeng, Jianbin
    Tahir, Ayesha
    Zhang, Guoping
    PLANT SOIL AND ENVIRONMENT, 2020, 66 (07) : 334 - 344
  • [6] The effect of 5-azacytidine on wheat seedlings responses to NaCl stress
    Zhong, L.
    Xu, Y. H.
    Wang, J. B.
    BIOLOGIA PLANTARUM, 2010, 54 (04) : 753 - 756
  • [7] Genotype-Specific Growth and Proteomic Responses of Maize Toward Salt Stress
    Soares, Ana L. C.
    Geilfus, Christoph-Martin
    Carpentier, Sebastien C.
    FRONTIERS IN PLANT SCIENCE, 2018, 9
  • [8] Salicylic acid mediated growth, physiological and proteomic responses in two wheat varieties under drought stress
    Sharma, Marisha
    Gupta, Sunil K.
    Majumder, Baisakhi
    Maurya, Vivek K.
    Deeba, Farah
    Alam, Afroz
    Pandey, Vivek
    JOURNAL OF PROTEOMICS, 2017, 163 : 28 - 51
  • [9] Nutrient uptake, physiological responses and growth of tobacco (Nicotiana tabacum L.) in soil under composite salt stress
    Cui, Jian
    Yao, Dongrui
    Ma, Jing
    Ye, Xiefeng
    Peng, Ying
    Song, Jiaqian
    Li, Jinfeng
    Chang, Yajun
    Yang, John
    Zhang, Zhen
    Li, Xueli
    Liu, Xiaojing
    Kariman, Khalil
    PEDOSPHERE, 2022, 32 (06) : 893 - 904
  • [10] Growth and physiological responses of Sporobolus robustus kunth seedlings to salt stress
    Fall, Fatoumata
    Diouf, Diegane
    Fall, Dioumacor
    Bakhoum, Niokhor
    Thioye, Babacar
    Kane, Aboubacry
    Ndiaye, Cheikh
    Ndoye, Ibrahima
    Ba, Amadou Mustapha
    ARID LAND RESEARCH AND MANAGEMENT, 2017, 31 (01) : 46 - 56