From norm derivatives to orthogonalities in Hilbert C*-modules

被引:5
作者
Wojcik, Pawel [1 ]
Zamani, Ali [2 ]
机构
[1] Pedag Univ Cracow, Inst Math, Krakow, Poland
[2] Damghan Univ, Sch Math & Comp Sci, POB 36715-364, Damghan, Iran
关键词
Hilbert C*-module; C*-algebra; state; norm derivative; Birkhoff-James orthogonality; BIRKHOFF-JAMES ORTHOGONALITY; OPERATORS; SPACES;
D O I
10.1080/03081087.2022.2046688
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (X,<.,.>) be a Hilbert C*-module over a C*-algebra A and let S(A) be the set of states on A. In this paper, we first compute the norm derivative for nonzero elements x and y of X as follows: lim(t -> 0+) parallel to x + ty parallel to - parallel to x parallel to/t = 1/parallel to x parallel to max {Re phi(< x,y >) : phi is an element of S(A), phi(< x, x >) = parallel to x parallel to(2)}. We then apply it to characterize different concepts of orthogonality in X. In particular, we present a simpler proof of the classical characterization of Birkhoff-James orthogonality in Hilbert C*-modules. Moreover, some generalized Daugavet equation in the C*-algebra B(H) of all bounded linear operators acting on a Hilbert space H is solved.
引用
收藏
页码:875 / 888
页数:14
相关论文
共 36 条
[11]  
Dixmier J., 1981, C ALGEBRAS
[12]  
Dragomir SS., 2004, SEMIINNER PRODUCTS A
[13]  
Grover P, 2021, J RAMANUJAN MATH SOC, V36, P85
[14]   ORTHOGONALITY IN NORMED LINEAR SPACES [J].
JAMES, RC .
DUKE MATHEMATICAL JOURNAL, 1945, 12 (02) :291-302
[15]  
Keckic DJ, 2012, EURASIAN MATH J, V3, P44
[16]   Gateaux derivative of B(H) norm [J].
Keckic, DJ .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (07) :2061-2067
[17]  
Keckic DJ, 2004, J OPERAT THEOR, V51, P89
[18]   BIRKHOFF-JAMES ORTHOGONALITY TO A SUBSPACE OF OPERATORS DEFINED BETWEEN BANACH SPACES [J].
Mal, Arpita ;
Paul, Kallol .
JOURNAL OF OPERATOR THEORY, 2021, 85 (02) :463-474
[19]  
Manuilov VM., 2005, MATH MONOGRAPHS, V226
[20]  
Miliic PM., 1987, MAT VESTN, V39, P325