From norm derivatives to orthogonalities in Hilbert C*-modules

被引:5
作者
Wojcik, Pawel [1 ]
Zamani, Ali [2 ]
机构
[1] Pedag Univ Cracow, Inst Math, Krakow, Poland
[2] Damghan Univ, Sch Math & Comp Sci, POB 36715-364, Damghan, Iran
关键词
Hilbert C*-module; C*-algebra; state; norm derivative; Birkhoff-James orthogonality; BIRKHOFF-JAMES ORTHOGONALITY; OPERATORS; SPACES;
D O I
10.1080/03081087.2022.2046688
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (X,<.,.>) be a Hilbert C*-module over a C*-algebra A and let S(A) be the set of states on A. In this paper, we first compute the norm derivative for nonzero elements x and y of X as follows: lim(t -> 0+) parallel to x + ty parallel to - parallel to x parallel to/t = 1/parallel to x parallel to max {Re phi(< x,y >) : phi is an element of S(A), phi(< x, x >) = parallel to x parallel to(2)}. We then apply it to characterize different concepts of orthogonality in X. In particular, we present a simpler proof of the classical characterization of Birkhoff-James orthogonality in Hilbert C*-modules. Moreover, some generalized Daugavet equation in the C*-algebra B(H) of all bounded linear operators acting on a Hilbert space H is solved.
引用
收藏
页码:875 / 888
页数:14
相关论文
共 36 条
[1]  
Alsina C., 2010, NORM DERIVATIVES CHA
[2]   A STRONG VERSION OF THE BIRKHOFF-JAMES ORTHOGONALITY IN HILBERT C*-MODULES [J].
Arambasic, Ljiljana ;
Rajic, Rajna .
ANNALS OF FUNCTIONAL ANALYSIS, 2014, 5 (01) :109-120
[3]   The Birkhoff-James orthogonality in Hilbert C*-modules [J].
Arambasic, Ljiljana ;
Rajic, Rajna .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 437 (07) :1913-1929
[4]   Orthogonality of matrices and some distance problems [J].
Bhatia, R ;
Semrl, P .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1999, 287 (1-3) :77-85
[5]   Characterization of Birkhoff-James orthogonality [J].
Bhattacharyya, Tirthankar ;
Grover, Priyanka .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 407 (02) :350-358
[6]  
Birkhoff G., 1935, DUKE MATH J, V1, P169, DOI [10.1215/S0012-7094-35-00115-6. h17i, DOI 10.1215/S0012-7094-35-00115-6.H17I]
[7]   ORTHOGONALITY AND PARALLELISM OF OPERATORS ON VARIOUS BANACH SPACES [J].
Bottazzi, T. ;
Conde, C. ;
Moslehian, M. S. ;
Wojcik, P. ;
Zamani, A. .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2019, 106 (02) :160-183
[8]  
Chmielinski J., 2013, RECENT DEV FUNCTIONA, V99, P17, DOI DOI 10.4064/BC99-0-2
[9]   On a ρ-orthogonality [J].
Chmielinski, Jacek ;
Wojcik, Pawel .
AEQUATIONES MATHEMATICAE, 2010, 80 (1-2) :45-55
[10]  
Conway J. B., 1985, COURSE FUNCTIONAL AN