Slice sampling algorithm for estimating the item response theory model with ordinal response data

被引:1
作者
Zhang, Jiwei [1 ]
Zhang, Zhaoyuan [2 ]
Lu, Jing [3 ]
机构
[1] Yunnan Univ, Sch Math & Stat, Kunming, Yunnan, Peoples R China
[2] Yili Normal Univ, Sch Math & Stat, Yili, Peoples R China
[3] Northeast Normal Univ, Sch Math & Stat, Key Lab Appl Stat MOE, Changchun 130024, Jilin, Peoples R China
基金
中国国家自然科学基金;
关键词
Bayesian estimation; Item response theory; Gibbs sampling algorithm; Graded response model; Metropolis-Hastings sampling algorithm; Slice sampling algorithm; CHAIN MONTE-CARLO; BAYESIAN-ESTIMATION; LATENT ABILITY; MISSING DATA; IRT; PARAMETERS; DISTRIBUTIONS; CONVERGENCE; SEEKING; MCMC;
D O I
10.1080/03610918.2021.1974477
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, a highly effective slice sampling algorithm is proposed to estimate the graded response model that has been widely used in educational psychological assessments. The new algorithm not only avoids the Metroplis-Hastings algorithm boring adjustment the turning parameters to achieve an appropriate acceptance probability, but also overcomes the dependence of the traditional Gibbs sampling algorithm on the conjugate prior distribution. Three simulation studies are conducted and a detailed analysis of sexual compulsivity scale (SCS) data is carried out to further illustrate the proposed methodology.
引用
收藏
页码:4909 / 4932
页数:24
相关论文
共 60 条
[21]  
Embretson S. E., 2000, ITEM RESPONSE THEORY
[22]  
Fox JP, 2010, STAT SOC BEHAV SC, P255, DOI 10.1007/978-1-4419-0742-4_9
[23]   Multilevel IRT using dichotomous and polytomous response data [J].
Fox, JP .
BRITISH JOURNAL OF MATHEMATICAL & STATISTICAL PSYCHOLOGY, 2005, 58 :145-172
[24]   Bayesian estimation of a multilevel IRT model using Gibbs sampling [J].
Fox, JP ;
Glas, CAW .
PSYCHOMETRIKA, 2001, 66 (02) :271-288
[25]   SAMPLING-BASED APPROACHES TO CALCULATING MARGINAL DENSITIES [J].
GELFAND, AE ;
SMITH, AFM .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1990, 85 (410) :398-409
[26]  
Gelman A., 1992, STAT SCI, V7, P457, DOI DOI 10.1214/SS/1177011136
[27]   STOCHASTIC RELAXATION, GIBBS DISTRIBUTIONS, AND THE BAYESIAN RESTORATION OF IMAGES [J].
GEMAN, S ;
GEMAN, D .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1984, 6 (06) :721-741
[28]   Noninformative priors for one-parameter item response models [J].
Ghosh, M ;
Ghosh, A ;
Chen, MH ;
Agresti, A .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2000, 88 (01) :99-115
[29]  
HASTINGS WK, 1970, BIOMETRIKA, V57, P97, DOI 10.1093/biomet/57.1.97
[30]  
Higdon DM, 1998, J AM STAT ASSOC, V93, P585