On the reflexivity properties of Banach bundles and Banach modules

被引:9
作者
Lucic, Milica [1 ]
Pasqualetto, Enrico [2 ]
Vojnovic, Ivana [1 ]
机构
[1] Univ Novi Sad, Fac Sci, Dept Math & Informat, Trg Dositeja Obradovica 4, Novi Sad 21000, Serbia
[2] Univ Jyvaskyla, Dept Math & Stat, POB 35 MaD, Jyvaskyla 40014, Finland
关键词
Banach bundle; Normed module; Section of a Banach bundle; Uniform convexity; Reflexivity; UNIFORM CONVEXITY; THEOREM;
D O I
10.1007/s43037-023-00315-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate some reflexivity-type properties of separable measurable Banach bundles over a s-finite measure space. Our two main results are the following: center dot The fibers of a bundle are uniformly convex (with a commonmodulus of convexity) if and only if the space of its L-p-sections is uniformly convex for every p is an element of (1,infinity). center dot The fibers of a bundle are reflexive if and only if the space of its L-p-sections is reflexive for every p is an element of (1,infinity). They generalise well-known results for Lebesgue-Bochner spaces.
引用
收藏
页数:26
相关论文
共 24 条
[1]  
Aliprantis C.D., 1999, INFINITE DIMENSIONAL, V2, DOI [DOI 10.1007/978-3-662-03961-8, 10.1007/978-3-662-03961-8, 10.1007/3-540-29587-9]
[2]  
Brezis H, 2011, UNIVERSITEXT, P1
[3]   Uniform convexity in factor and conjugate spaces [J].
Day, MM .
ANNALS OF MATHEMATICS, 1944, 45 :375-385
[4]  
Fabian M, 2011, CMS BOOKS MATH, P1, DOI 10.1007/978-1-4419-7515-7
[5]  
Gigli N., 2018, LECT NOTES DIFFERENT, P54
[6]  
Gigli N., 2020, Lectures on nonsmooth differential geometry, SISSA Springer Series, V2
[7]  
Gigli N, 2022, Arxiv, DOI arXiv:2207.04972
[8]   Introduction [J].
Gigli, Nicola .
MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 251 (1196) :1-+
[9]  
Guo T.X., 1993, P 1 CHIN POSTD AC C, P1150
[10]  
Guo TX, 2012, ACTA MATH SIN, V28, P909, DOI 10.1007/s10114-011-0367-2