In an infinite graph X, the equation Delta u(x) = phi(x)u(x), phi(x) >= 0, is termed the Schrodinger equation. The solutions of this equation are named phi.-harmonic functions. This article studies varied aspects associated with these solutions: Harnack principle, minimum principle, domination principle, Dirichlet solution etc. The main thrust is the development of an abstract theory of discrete phi-biharmonic functions on X and use it for the phi-biharmonic classification of infinite graphs.
机构:
Vellore Inst Technol Chennai, Div Math, Sch Adv Sci, Chennai 600127, Tamil Nadu, IndiaVellore Inst Technol Chennai, Div Math, Sch Adv Sci, Chennai 600127, Tamil Nadu, India
Nathiya, N.
Smyrna, C. Amulya
论文数: 0引用数: 0
h-index: 0
机构:
Vellore Inst Technol Chennai, Div Math, Sch Adv Sci, Chennai 600127, Tamil Nadu, IndiaVellore Inst Technol Chennai, Div Math, Sch Adv Sci, Chennai 600127, Tamil Nadu, India
机构:
Vellore Inst Technol Chennai, Div Math, Sch Adv Sci, Chennai 600127, Tamil Nadu, IndiaVellore Inst Technol Chennai, Div Math, Sch Adv Sci, Chennai 600127, Tamil Nadu, India
Nathiya, N.
Smyrna, C. Amulya
论文数: 0引用数: 0
h-index: 0
机构:
Vellore Inst Technol Chennai, Div Math, Sch Adv Sci, Chennai 600127, Tamil Nadu, IndiaVellore Inst Technol Chennai, Div Math, Sch Adv Sci, Chennai 600127, Tamil Nadu, India