Biharmonic functions on Schrodinger networks

被引:2
作者
Bajunaid, Ibtesam [1 ]
机构
[1] King Saud Univ, Coll Sci, Dept Math, POB 2455, Riyadh 11451, Saudi Arabia
关键词
Infinite graphs; Discrete Schrodinger equation; Biharmonic functions; AXIOMATICS;
D O I
10.1007/s12215-023-00979-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In an infinite graph X, the equation Delta u(x) = phi(x)u(x), phi(x) >= 0, is termed the Schrodinger equation. The solutions of this equation are named phi.-harmonic functions. This article studies varied aspects associated with these solutions: Harnack principle, minimum principle, domination principle, Dirichlet solution etc. The main thrust is the development of an abstract theory of discrete phi-biharmonic functions on X and use it for the phi-biharmonic classification of infinite graphs.
引用
收藏
页码:1277 / 1287
页数:11
相关论文
共 16 条
  • [11] INFINITE SCHRODINGER NETWORKS
    Nathiya, N.
    Smyrna, C. Amulya
    [J]. VESTNIK UDMURTSKOGO UNIVERSITETA-MATEMATIKA MEKHANIKA KOMPYUTERNYE NAUKI, 2021, 31 (04): : 640 - 650
  • [12] Nicolesco M., 1936, FONCTIONS POLYHARMON
  • [13] Boundary Representations of λ-Harmonic and Polyharmonic Functions on Trees
    Picardello, Massimo A.
    Woess, Wolfgang
    [J]. POTENTIAL ANALYSIS, 2019, 51 (04) : 541 - 561
  • [14] AXIOMATICS OF BIHARMONIC FUNCTIONS
    SMYRNELIS, EP
    [J]. ANNALES DE L INSTITUT FOURIER, 1975, 25 (01) : 35 - 97
  • [15] AXIOMATICS OF BIHARMONIC FUNCTIONS .2. PARTS 7 TO 12
    SMYRNELIS, EP
    [J]. ANNALES DE L INSTITUT FOURIER, 1976, 26 (03) : 1 - 47
  • [16] Yamaski M., 1980, MEM FS SHIMANE U, V14, P55