Weakly Supervised 3D Point Cloud Segmentation via Multi-Prototype Learning
被引:11
|
作者:
Su, Yongyi
论文数: 0引用数: 0
h-index: 0
机构:
South China Univ Technol, Sch Elect & Informat Engn, Guangzhou 510641, Peoples R ChinaSouth China Univ Technol, Sch Elect & Informat Engn, Guangzhou 510641, Peoples R China
Su, Yongyi
[1
]
Xu, Xun
论文数: 0引用数: 0
h-index: 0
机构:
ASTAR, I2R, Singapore 138632, Singapore
Southwest Jiaotong Univ, Sch Comp & Artificial Intelligence, Chengdu 611756, Peoples R ChinaSouth China Univ Technol, Sch Elect & Informat Engn, Guangzhou 510641, Peoples R China
Xu, Xun
[2
,3
]
Jia, Kui
论文数: 0引用数: 0
h-index: 0
机构:
South China Univ Technol, Sch Elect & Informat Engn, Guangzhou 510641, Peoples R ChinaSouth China Univ Technol, Sch Elect & Informat Engn, Guangzhou 510641, Peoples R China
Jia, Kui
[1
]
机构:
[1] South China Univ Technol, Sch Elect & Informat Engn, Guangzhou 510641, Peoples R China
[2] ASTAR, I2R, Singapore 138632, Singapore
[3] Southwest Jiaotong Univ, Sch Comp & Artificial Intelligence, Chengdu 611756, Peoples R China
3D point cloud;
weakly supervised learning;
multi-prototype learning;
SEMANTIC SEGMENTATION;
D O I:
10.1109/TCSVT.2023.3281151
中图分类号:
TM [电工技术];
TN [电子技术、通信技术];
学科分类号:
0808 ;
0809 ;
摘要:
Addressing the annotation challenge in 3D Point Cloud segmentation has inspired research into weakly supervised learning. Existing approaches mainly focus on exploiting manifold and pseudo-labeling to make use of large unlabeled data points. A fundamental challenge here lies in the large intra-class variations of local geometric structure, resulting in subclasses within a semantic class. In this work, we leverage this intuition and opt for maintaining an individual classifier for each subclass. Technically, we design a multi-prototype classifier, each prototype serves as the classifier weights for one subclass. To enable effective updating of multi-prototype classifier weights, we propose two constraints respectively for updating the prototypes w.r.t. all point features and for encouraging the learning of diverse prototypes. Experiments on weakly supervised 3D point cloud segmentation tasks validate the efficacy of proposed method in particular at low-label regime. Our hypothesis is also verified given the consistent discovery of semantic subclasses at no cost of additional annotations.
机构:
East China Normal Univ, Sch Comp Sci & Technol, Shanghai 200060, Peoples R ChinaEast China Normal Univ, Sch Comp Sci & Technol, Shanghai 200060, Peoples R China
Sun, Tianfang
Zhang, Zhizhong
论文数: 0引用数: 0
h-index: 0
机构:
East China Normal Univ, Sch Comp Sci & Technol, Shanghai 200060, Peoples R ChinaEast China Normal Univ, Sch Comp Sci & Technol, Shanghai 200060, Peoples R China
Zhang, Zhizhong
Tan, Xin
论文数: 0引用数: 0
h-index: 0
机构:
East China Normal Univ, Sch Comp Sci & Technol, Shanghai 200060, Peoples R China
East China Normal Univ, Chongqing Inst, Chongqing 401333, Peoples R ChinaEast China Normal Univ, Sch Comp Sci & Technol, Shanghai 200060, Peoples R China
Tan, Xin
Qu, Yanyun
论文数: 0引用数: 0
h-index: 0
机构:
Xiamen Univ, Sch Informat, Dept Comp Sci & Technol, Xiamen 361005, Fujian, Peoples R ChinaEast China Normal Univ, Sch Comp Sci & Technol, Shanghai 200060, Peoples R China
Qu, Yanyun
Xie, Yuan
论文数: 0引用数: 0
h-index: 0
机构:
East China Normal Univ, Sch Comp Sci & Technol, Shanghai 200060, Peoples R China
East China Normal Univ, Chongqing Inst, Chongqing 401333, Peoples R ChinaEast China Normal Univ, Sch Comp Sci & Technol, Shanghai 200060, Peoples R China
机构:
Zhejiang Univ, Ningbo Inst Technol, Sch Comp & Data Engn, Ningbo, Peoples R ChinaZhejiang Univ, Ningbo Inst Technol, Sch Comp & Data Engn, Ningbo, Peoples R China
Shu, Zhenyu
Shen, Xiaoyong
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Univ Hong Kong, Dept Comp Sci & Engn, Hong Kong, Peoples R ChinaZhejiang Univ, Ningbo Inst Technol, Sch Comp & Data Engn, Ningbo, Peoples R China
Shen, Xiaoyong
Xin, Shiqing
论文数: 0引用数: 0
h-index: 0
机构:
ShanDong Univ, Sch Comp Sci & Technol, Jinan, Peoples R ChinaZhejiang Univ, Ningbo Inst Technol, Sch Comp & Data Engn, Ningbo, Peoples R China
Xin, Shiqing
Chang, Qingjun
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang Univ, Ningbo Inst Technol, Sch Comp & Data Engn, Ningbo, Peoples R ChinaZhejiang Univ, Ningbo Inst Technol, Sch Comp & Data Engn, Ningbo, Peoples R China
Chang, Qingjun
Feng, Jieqing
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang Univ, State Key Lab CAD&CG, Hangzhou, Peoples R ChinaZhejiang Univ, Ningbo Inst Technol, Sch Comp & Data Engn, Ningbo, Peoples R China
Feng, Jieqing
Kavan, Ladislav
论文数: 0引用数: 0
h-index: 0
机构:
Univ Utah, Sch Comp, Salt Lake City, UT USAZhejiang Univ, Ningbo Inst Technol, Sch Comp & Data Engn, Ningbo, Peoples R China
Kavan, Ladislav
Liu, Ligang
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sci & Technol China, Graph & Geometr Comp Lab, Sch Math Sci, Hefei, Anhui, Peoples R ChinaZhejiang Univ, Ningbo Inst Technol, Sch Comp & Data Engn, Ningbo, Peoples R China