Automatic Detection and Classification of Epileptic Seizures from EEG Data: Finding Optimal Acquisition Settings and Testing Interpretable Machine Learning Approach

被引:8
作者
Statsenko, Yauhen [1 ,2 ,3 ]
Babushkin, Vladimir [1 ]
Talako, Tatsiana [1 ,4 ]
Kurbatova, Tetiana [1 ]
Smetanina, Darya [1 ]
Simiyu, Gillian Lylian [1 ]
Habuza, Tetiana [3 ,5 ]
Ismail, Fatima [6 ]
Almansoori, Taleb M. [1 ]
Gorkom, Klaus N. -V. [1 ]
Szolics, Miklos [7 ,8 ]
Hassan, Ali [7 ]
Ljubisavljevic, Milos [9 ,10 ]
机构
[1] United Arab Emirates Univ, Coll Med & Hlth Sci, Radiol Dept, POB 15551, Al Ain, U Arab Emirates
[2] ASPIRE Precis Med Res Inst Abu Dhabi, Med Imaging Platform, POB 15551, Al Ain, U Arab Emirates
[3] United Arab Emirates Univ, Big Data Analyt Ctr, POB 15551, Al Ain, U Arab Emirates
[4] Minsk Sci & Pract Ctr Surg Transplantol & Hematol, Dept Oncohematol, Minsk 220089, BELARUS
[5] United Arab Emirates Univ, Coll Informat Technol, Dept Comp Sci & Software Engn, POB 15551, Al Ain, U Arab Emirates
[6] United Arab Emirates Univ, Coll Med & Hlth Sci, Pediat Dept, POB 15551, Al Ain, U Arab Emirates
[7] Tawam Hosp, Med Dept, Neurol Div, POB 15258, Al Ain, U Arab Emirates
[8] United Arab Emirates Univ, Coll Med & Hlth Sci, Internal Med Dept, POB 15551, Al Ain, U Arab Emirates
[9] United Arab Emirates Univ, Dept Physiol, Coll Med & Hlth Sci, POB 15551, Al Ain, U Arab Emirates
[10] ASPIRE Precis Med Res Inst Abu Dhabi, Neurosci Platform, POB 15551, Al Ain, U Arab Emirates
关键词
deep learning; interpretable machine learning; activation maximization; epileptic seizure; EEG; acquisition settings; source reconstruction; HIGH-FREQUENCY OSCILLATIONS; FEATURE-EXTRACTION; ABSENCE SEIZURES; NEURAL-NETWORKS; SYSTEM; BRAIN; MISDIAGNOSIS; CONNECTIONS; TRANSFORM; PATTERNS;
D O I
10.3390/biomedicines11092370
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Deep learning (DL) is emerging as a successful technique for automatic detection and differentiation of spontaneous seizures that may otherwise be missed or misclassified. Herein, we propose a system architecture based on top-performing DL models for binary and multigroup classifications with the non-overlapping window technique, which we tested on the TUSZ dataset. The system accurately detects seizure episodes (87.7% Sn, 91.16% Sp) and carefully distinguishes eight seizure types (95-100% Acc). An increase in EEG sampling rate from 50 to 250 Hz boosted model performance: the precision of seizure detection rose by 5%, and seizure differentiation by 7%. A low sampling rate is a reasonable solution for training reliable models with EEG data. Decreasing the number of EEG electrodes from 21 to 8 did not affect seizure detection but worsened seizure differentiation significantly: 98.24 +/- 0.17 vs. 85.14 +/- 3.14% recall. In detecting epileptic episodes, all electrodes provided equally informative input, but in seizure differentiation, their informative value varied. We improved model explainability with interpretable ML. Activation maximization highlighted the presence of EEG patterns specific to eight seizure types. Cortical projection of epileptic sources depicted differences between generalized and focal seizures. Interpretable ML techniques confirmed that our system recognizes biologically meaningful features as indicators of epileptic activity in EEG.
引用
收藏
页数:22
相关论文
共 50 条
  • [41] Automatic multi-modal intelligent seizure acquisition (MISA) system for detection of motor seizures from electromyographic data and motion data
    Conradsen, Isa
    Beniczky, Sandor
    Wolf, Peter
    Kjaer, Troels W.
    Sams, Thomas
    Sorensen, Helge B. D.
    [J]. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2012, 107 (02) : 97 - 110
  • [42] Classification of epileptic seizures from electroencephalogram (EEG) data using bidirectional short-term memory (Bi-LSTM) network architecture
    Tuncer, Erdem
    Bolat, Emine Dogru
    [J]. BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2022, 73
  • [43] Machine learning approach for automatic brain tumour detection using patch-based feature extraction and classification
    Kalaiselvi, T.
    Kumarashankar, P.
    Sriramakrishnan, P.
    [J]. INTERNATIONAL JOURNAL OF BIOMEDICAL ENGINEERING AND TECHNOLOGY, 2022, 39 (04) : 396 - 411
  • [44] Driving maneuver classification from time series data: a rule based machine learning approach
    Md. Mokammel Haque
    Supriya Sarker
    M. Ali Akber Dewan
    [J]. Applied Intelligence, 2022, 52 : 16900 - 16915
  • [45] Driving maneuver classification from time series data: a rule based machine learning approach
    Haque, Md Mokammel
    Sarker, Supriya
    Dewan, M. Ali Akber
    [J]. APPLIED INTELLIGENCE, 2022, 52 (14) : 16900 - 16915
  • [46] A multiple model machine learning approach for soil classification from cone penetration test data
    Carvalho, Lucas O.
    Ribeiro, Dimas B.
    [J]. SOILS AND ROCKS, 2021, 44 (04):
  • [47] An Explainable Machine Learning Network for Classification of Autism Spectrum Disorder Using Optimal Frequency Band Identification From Brain EEG
    Saranya, S.
    Menaka, R.
    [J]. IEEE ACCESS, 2025, 13 : 32016 - 32030
  • [48] Optimal Channels and Features Selection Based ADHD Detection From EEG Signal Using Statistical and Machine Learning Techniques
    Maniruzzaman, Md.
    Hasan, Md. Al Mehedi
    Asai, Nobuyoshi
    Shin, Jungpil
    [J]. IEEE ACCESS, 2023, 11 : 33570 - 33583
  • [49] Classification of Wheelchair Related Shoulder Loading Activities from Wearable Sensor Data: A Machine Learning Approach
    de Vries, Wiebe H. K.
    Amrein, Sabrina
    Arnet, Ursina
    Mayrhuber, Laura
    Ehrmann, Cristina
    Veeger, H. E. J.
    [J]. SENSORS, 2022, 22 (19)
  • [50] Machine-Learning Approach for Automatic Detection of Wild Beluga Whales from Hand-Held Camera Pictures
    Araujo, Voncarlos M.
    Shukla, Ankita
    Chion, Clement
    Gambs, Sebastien
    Michaud, Robert
    [J]. SENSORS, 2022, 22 (11)