Automatic Detection and Classification of Epileptic Seizures from EEG Data: Finding Optimal Acquisition Settings and Testing Interpretable Machine Learning Approach

被引:8
|
作者
Statsenko, Yauhen [1 ,2 ,3 ]
Babushkin, Vladimir [1 ]
Talako, Tatsiana [1 ,4 ]
Kurbatova, Tetiana [1 ]
Smetanina, Darya [1 ]
Simiyu, Gillian Lylian [1 ]
Habuza, Tetiana [3 ,5 ]
Ismail, Fatima [6 ]
Almansoori, Taleb M. [1 ]
Gorkom, Klaus N. -V. [1 ]
Szolics, Miklos [7 ,8 ]
Hassan, Ali [7 ]
Ljubisavljevic, Milos [9 ,10 ]
机构
[1] United Arab Emirates Univ, Coll Med & Hlth Sci, Radiol Dept, POB 15551, Al Ain, U Arab Emirates
[2] ASPIRE Precis Med Res Inst Abu Dhabi, Med Imaging Platform, POB 15551, Al Ain, U Arab Emirates
[3] United Arab Emirates Univ, Big Data Analyt Ctr, POB 15551, Al Ain, U Arab Emirates
[4] Minsk Sci & Pract Ctr Surg Transplantol & Hematol, Dept Oncohematol, Minsk 220089, BELARUS
[5] United Arab Emirates Univ, Coll Informat Technol, Dept Comp Sci & Software Engn, POB 15551, Al Ain, U Arab Emirates
[6] United Arab Emirates Univ, Coll Med & Hlth Sci, Pediat Dept, POB 15551, Al Ain, U Arab Emirates
[7] Tawam Hosp, Med Dept, Neurol Div, POB 15258, Al Ain, U Arab Emirates
[8] United Arab Emirates Univ, Coll Med & Hlth Sci, Internal Med Dept, POB 15551, Al Ain, U Arab Emirates
[9] United Arab Emirates Univ, Dept Physiol, Coll Med & Hlth Sci, POB 15551, Al Ain, U Arab Emirates
[10] ASPIRE Precis Med Res Inst Abu Dhabi, Neurosci Platform, POB 15551, Al Ain, U Arab Emirates
关键词
deep learning; interpretable machine learning; activation maximization; epileptic seizure; EEG; acquisition settings; source reconstruction; HIGH-FREQUENCY OSCILLATIONS; FEATURE-EXTRACTION; ABSENCE SEIZURES; NEURAL-NETWORKS; SYSTEM; BRAIN; MISDIAGNOSIS; CONNECTIONS; TRANSFORM; PATTERNS;
D O I
10.3390/biomedicines11092370
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Deep learning (DL) is emerging as a successful technique for automatic detection and differentiation of spontaneous seizures that may otherwise be missed or misclassified. Herein, we propose a system architecture based on top-performing DL models for binary and multigroup classifications with the non-overlapping window technique, which we tested on the TUSZ dataset. The system accurately detects seizure episodes (87.7% Sn, 91.16% Sp) and carefully distinguishes eight seizure types (95-100% Acc). An increase in EEG sampling rate from 50 to 250 Hz boosted model performance: the precision of seizure detection rose by 5%, and seizure differentiation by 7%. A low sampling rate is a reasonable solution for training reliable models with EEG data. Decreasing the number of EEG electrodes from 21 to 8 did not affect seizure detection but worsened seizure differentiation significantly: 98.24 +/- 0.17 vs. 85.14 +/- 3.14% recall. In detecting epileptic episodes, all electrodes provided equally informative input, but in seizure differentiation, their informative value varied. We improved model explainability with interpretable ML. Activation maximization highlighted the presence of EEG patterns specific to eight seizure types. Cortical projection of epileptic sources depicted differences between generalized and focal seizures. Interpretable ML techniques confirmed that our system recognizes biologically meaningful features as indicators of epileptic activity in EEG.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Detecting epileptic seizures using machine learning and interpretable features of human EEG
    Karpov, Oleg E.
    Afinogenov, Sergey
    Grubov, Vadim V.
    Maksimenko, Vladimir
    Korchagin, Sergey
    Utyashev, Nikita
    Hramov, Alexander E.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2023, 232 (05) : 673 - 682
  • [2] DETECTION OF EPILEPTIC SEIZURES IN EEG BY USING MACHINE LEARNING TECHNIQUES
    Al-Huseiny M.S.
    Sajit A.S.
    Diagnostyka, 2023, 24 (01):
  • [3] An automatic mobile-health based approach for EEG epileptic seizures detection
    Menshawy, Mohamed E. L.
    Benharref, Abdelghani
    Serhani, Mohamed
    EXPERT SYSTEMS WITH APPLICATIONS, 2015, 42 (20) : 7157 - 7174
  • [4] Detection of Epileptic Seizures in EEG-Inspired by Machine Learning Techniques
    Mahantesh, K.
    Chetana, R.
    INTELLIGENT COMPUTING AND COMMUNICATION, ICICC 2019, 2020, 1034 : 443 - 450
  • [5] Automatic diseases detection and classification of EEG signal with pervasive computing using machine learning
    Rajashekhar, U.
    Neelappa
    Harish, H. M.
    INTERNATIONAL JOURNAL OF PERVASIVE COMPUTING AND COMMUNICATIONS, 2023, 19 (03) : 432 - 450
  • [6] Smart neurocare approach for detection of epileptic seizures using deep learning based temporal analysis of EEG patterns
    Singh, Kuldeep
    Malhotra, Jyoteesh
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (20) : 29555 - 29586
  • [7] Detection of Epileptic Seizures From EEG Signals by Combining Dimensionality Reduction Algorithms With Machine Learning Models
    Zubair, Muhammad
    Belykh, Maria Vladimirovna
    Naik, M. Umesh Kumar
    Gouher, Mohammad Fareeda Madeen
    Vishwakarma, Shani
    Ahamed, Shaik Rafi
    Kongara, Ramanjaneyulu
    IEEE SENSORS JOURNAL, 2021, 21 (15) : 16861 - 16869
  • [8] Detection of Epileptic Seizures from EEG Data Using CEEMD Algorithm
    Baspinar, Ulvi
    Yol, Seyma
    Aydin, Muberra
    Gulhan, Rezzan
    Us, Zeynep
    32ND IEEE SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, SIU 2024, 2024,
  • [9] Automatic Identification of Epileptic Seizures From EEG Signals Using Sparse Representation-Based Classification
    Sheykhivand, Sobhan
    Rezaii, Tohid Yousefi
    Mousavi, Zohreh
    Delpak, Azra
    Farzamnia, Ali
    IEEE ACCESS, 2020, 8 : 138834 - 138845
  • [10] Graph Theory and Machine Learning Based Epileptic Seizures Analysis from EEG
    Shankar, Anand
    Dandapat, Samarendra
    Barma, Shovan
    2020 IEEE 63RD INTERNATIONAL MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS (MWSCAS), 2020, : 982 - 985