Reconciling the theoretical and experimental electronic structure of NbO2

被引:6
作者
Berman, Samuel [1 ]
Zhussupbekova, Ainur [1 ,2 ]
Boschker, Jos E. [3 ]
Schwarzkopf, Jutta [3 ]
O'Regan, David D. [1 ]
Shvets, Igor, V [1 ]
Zhussupbekov, Kuanysh [1 ,2 ,4 ]
机构
[1] Univ Dublin, Sch Phys, Dublin 2, Ireland
[2] Univ Dublin, Trinity Coll Dublin, Sch Chem, Dublin 2, Ireland
[3] Leibniz Inst Kristallzuchtung, Max Born Str 2, D-12489 Berlin, Germany
[4] Kh Dosmukhamedov Atyrau Univ, Studenchesky Ave,1, Atyrau, Kazakhstan
基金
英国工程与自然科学研究理事会; 爱尔兰科学基金会;
关键词
METAL-INSULATOR-TRANSITION; GAS; PHASE; DISTORTIONS; SURFACE; TIO2;
D O I
10.1103/PhysRevB.108.155141
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Metal-insulator transition materials such as NbO2 have generated much excitement in recent years for their potential applications in computing and sensing. NbO2 has generated considerable debate over the nature of the phase transition and the values of the band gap and bandwidths in the insulating phase. We present a combined theoretical and experimental study of the band gap and electronic structure of the insulating phase of NbO2. We carry out ab initio density functional theory (DFT) plus U calculations, directly determining the U and J parameters for both the Nb 4d and O 2p subspaces through the recently introduced minimum-tracking linear response method. We find a fundamental bulk band gap of 0.80 eV for the full DFT+U+J theory. We also perform calculations and measurements for a (100)-oriented thin film. Scanning tunneling spectroscopy measurements show that the surface band gap varies from 0.75 to 1.35 eV due to an excess of oxygen in and near the surface region of the film. Slab calculations indicate metallicity localized at the surface region caused by an energy level shift consistent with a reduction in Coulomb repulsion. We demonstrate that this effect in combination with the simple, low-cost DFT+U+J method can account for the bandwidths and p-d gap observed in x-ray photoelectron spectroscopy experiments. Overall, our results indicate the possible presence of a two-dimensional anisotropic metallic layer at the (100) surface of NbO2.
引用
收藏
页数:10
相关论文
共 68 条
[1]   Atom-projected and angular momentum resolved density of states in the ONETEP code [J].
Aarons, J. ;
Verga, L. G. ;
Hine, N. D. M. ;
Skylaris, C-K .
ELECTRONIC STRUCTURE, 2019, 1 (03)
[2]   Visibility of TiO2(110)(1x1) bridging oxygen in core level photoelectron spectroscopy [J].
Allegretti, F. ;
Treacy, J. P. W. ;
Lindsay, R. .
PHYSICAL REVIEW B, 2012, 85 (20)
[3]   Anisotropic two-dimensional electron gas at the LaAlO3/SrTiO3 (110) interface [J].
Annadi, A. ;
Zhang, Q. ;
Wang, X. Renshaw ;
Tuzla, N. ;
Gopinadhan, K. ;
Lu, W. M. ;
Barman, A. Roy ;
Liu, Z. Q. ;
Srivastava, A. ;
Saha, S. ;
Zhao, Y. L. ;
Zeng, S. W. ;
Dhar, S. ;
Olsson, E. ;
Gu, B. ;
Yunoki, S. ;
Maekawa, S. ;
Hilgenkamp, H. ;
Venkatesan, T. ;
Ariando .
NATURE COMMUNICATIONS, 2013, 4
[4]  
[Anonymous], Supplemental Material, DOI [10.1103/PhysRevB.108.155141, DOI 10.1103/PHYSREVB.108.155141]
[5]   Thin film TiO2 on nickel(110):: an STM study [J].
Ashworth, TV ;
Thornton, G .
THIN SOLID FILMS, 2001, 400 (1-2) :43-45
[6]   ELECTRON-TRANSPORT IN SINGLE-CRYSTALS OF NIOBIUM DIOXIDE [J].
BELANGER, G ;
DESTRY, J ;
PERLUZZO, G ;
RACCAH, PM .
CANADIAN JOURNAL OF PHYSICS, 1974, 52 (22) :2272-2280
[7]   Unraveling the atomic and electronic structure of nanocrystals on superconducting Nb(110): Impact of the oxygen monolayer [J].
Berman, Samuel ;
Zhussupbekova, Ainur ;
Walls, Brian ;
Walshe, Killian ;
Bozhko, Sergei I. ;
Ionov, Andrei ;
O'Regan, David D. ;
Shvets, Igor, V ;
Zhussupbekov, Kuanysh .
PHYSICAL REVIEW B, 2023, 107 (16)
[8]   A POWDER NEUTRON-DIFFRACTION STUDY OF SEMICONDUCTING AND METALLIC NIOBIUM DIOXIDE [J].
BOLZAN, AA ;
FONG, C ;
KENNEDY, BJ ;
HOWARD, CJ .
JOURNAL OF SOLID STATE CHEMISTRY, 1994, 113 (01) :9-14
[9]   Dynamic electronic correlation effects in NbO2 as compared to VO2 [J].
Brito, W. H. ;
Aguiar, M. C. O. ;
Haule, K. ;
Kotliar, G. .
PHYSICAL REVIEW B, 2017, 96 (19)
[10]   DFT plus U-type functional derived to explicitly address the flat plane condition [J].
Burgess, Andrew C. ;
Linscott, Edward ;
O'Regan, David D. .
PHYSICAL REVIEW B, 2023, 107 (12)