Engineering the S-scheme heterojunction between NiO microrods and MgAl-LDH nanoplates for efficient and selective photoreduction of CO2 to CH4

被引:60
作者
Yang, Hongli [1 ,2 ]
Hou, Huilin [1 ]
Yang, Man [1 ]
Zhu, Zhongli [1 ]
Fu, Hui [1 ]
Zhang, Dongdong [1 ]
Luo, Yong [2 ,3 ]
Yang, Weiyou [1 ]
机构
[1] Ningbo Univ Technol, Inst Micro Nano Mat & Devices, Ningbo 315211, Peoples R China
[2] China Univ Min & Technol, Sch Chem Engn & Technol, Xuzhou 221116, Peoples R China
[3] China Univ Min & Technol, Sch Mat Sci & Phys, Xuzhou 221116, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
CO; 2; photoreduction; Solar fuel; MOF; NiO/MgAl-LDH; Internal electric field; PHOTOCATALYTIC REDUCTION; CONVERSION; DESIGN;
D O I
10.1016/j.cej.2023.145813
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The selective photoreduction of CO2 into hydrocarbon fuels, such as CH4, is highly desirable for sustainable energy but remains a significant challenge due to slow proton-electron transfer processes and competing intermediates. Herein, a novel NiO/MgAl-LDH (NMA-x, LDH represents layered double hydroxide) step-scheme (S-scheme) heterojunction has been engineered via in-situ anchoring MgAl-LDH nanoplates on metal-organic frameworks (MOFs) derived NiO microrods, which improves the CO2 adsorption capability and specific surface area of NiO. The steered internal electric field in the p-n heterointerface promotes charge separation and attracts a high electron density center on the catalyst surface to favor CH4 production. Meanwhile, S-scheme photo-generated charge transfer mechanism is proposed by in-situ X-ray photoelectron spectroscopy (XPS), in-situ diffuse reflectance infrared Fourier transform (DRIFT) spectra and density functional theory (DFT) calculation. In this process, photogenerated electrons are transferred from the conduction band (CB) of MgAl-LDH to the valence band (VB) of NiO, facilitating the CHO* species serve as the critical intermediate for producing CH4 through desired photocatalytic CO2 reduction. Using pure water as a proton source, the NMA-2 catalyst achieved a high CH4 selectivity of 91.2% and a yield of 8.98 & mu;mol & BULL;g 1 & BULL;h  1, representing significant potential for practical applications. This catalyst outperformed pristine and revitalized NiO by 4.23 and 2.07 times, respectively.
引用
收藏
页数:13
相关论文
共 69 条
[1]   Photocatalytic CO2 Reduction to C2+Products [J].
Albero, Josep ;
Peng, Yong ;
Garcia, Hermenegildo .
ACS CATALYSIS, 2020, 10 (10) :5734-5749
[2]   Sustained, photocatalytic CO2 reduction to CH4 in a continuous flow reactor by earth-abundant materials: Reduced titania-Cu2O Z-scheme heterostructures [J].
Ali, Shahzad ;
Lee, Junho ;
Kim, Hwapyong ;
Hwang, Yunju ;
Razzaq, Abdul ;
Jung, Jin-Woo ;
Cho, Chang-Hee ;
In, Su-Il .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2020, 279
[3]  
Cao Y, 2022, CHIN J STRUCT CHEM, V41, P2206079, DOI 10.14102/j.cnki.0254-5861.2022-0042
[4]   TiO2 nanosheet/NiO nanorod hierarchical nanostructures: p-n heterojunctions towards efficient photocatalysis [J].
Chen, Jie ;
Wang, Minggui ;
Han, Jie ;
Guo, Rong .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2020, 562 :313-321
[5]   Engineering ultrafine NiS cocatalysts as active sites to boost photocatalytic hydrogen production of MgAl layered double hydroxide [J].
Chen, Jingshuai ;
Wang, Chao ;
Zhang, Yun ;
Guo, Zhenzhen ;
Luo, Yuxin ;
Mao, Chang-Jie .
APPLIED SURFACE SCIENCE, 2020, 506
[6]   Emerging Strategies for CO2 Photoreduction to CH4: From Experimental to Data-Driven Design [J].
Cheng, Shuwen ;
Sun, Zhehao ;
Lim, Kang Hui ;
Gani, Terry Zhi Hao ;
Zhang, Tianxi ;
Wang, Yisong ;
Yin, Hang ;
Liu, Kaili ;
Guo, Haiwei ;
Du, Tao ;
Liu, Liying ;
Li, Gang Kevin ;
Yin, Zongyou ;
Kawi, Sibudjing .
ADVANCED ENERGY MATERIALS, 2022, 12 (20)
[7]   Developing hierarchical CdS/NiO hollow heterogeneous architectures for boosting photocatalytic hydrogen generation [J].
Deng, Chonghai ;
Ye, Fan ;
Wang, Tao ;
Ling, Xiaohui ;
Peng, Lulu ;
Yu, Hong ;
Ding, Kangzhe ;
Hu, Hanmei ;
Dong, Qiang ;
Le, Huirong ;
Han, Yongsheng .
NANO RESEARCH, 2022, 15 (03) :2003-2012
[8]   Photocatalytic CO2 reduction of C/ZnO nanofibers enhanced by an Ni-NiS cocatalyst [J].
Deng, Hongzhao ;
Xu, Feiyan ;
Cheng, Bei ;
Yu, Jiaguo ;
Ho, Wingkei .
NANOSCALE, 2020, 12 (13) :7206-7213
[9]   Enhanced photocatalytic reduction for the dechlorination of 2-chlorodibenzo-p-dioxin by high-performance g-C3N4/NiO heterojunction composites under ultraviolet-visible light illumination [J].
Ding, Jiafeng ;
Lu, Shihuan ;
Shen, Lilai ;
Yan, Ruopeng ;
Zhang, Yinan ;
Zhang, Hangjun .
JOURNAL OF HAZARDOUS MATERIALS, 2020, 384
[10]   Tailoring S-scheme-based carbon nanotubes (CNTs) mediated Ag-CuBi2O4/Bi2S3 nanomaterials for photocatalytic dyes degradation in the aqueous system [J].
Dutta, Vishal ;
Sudhaik, Anita ;
Sonu ;
Raizada, Pankaj ;
Singh, Archana ;
Ahamad, Tansir ;
Thakur, Sourbh ;
Le, Quyet Van ;
Nguyen, Van-Huy ;
Singh, Pardeep .
JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2023, 162 :11-24