Assessment of brain cancer atlas maps with multimodal imaging features

被引:7
作者
Capobianco, Enrico [1 ]
Dominietto, Marco [2 ,3 ]
机构
[1] Jackson Lab, 10 Discovery Dr, Farmington, CT 06032 USA
[2] Paul Scherrer Inst PSI, Forsch Str 111, CH-5232 Villigen, Switzerland
[3] Gate Brain SA, Via Livio 7, CH-6830 Chiasso, Switzerland
关键词
GBM; MRI imaging; Brain cancer atlas; Radiomics; Multimodal integration; TUMOR PROGRESSION; RADIOMICS; HETEROGENEITY; GLIOBLASTOMA; CHALLENGES; IMAGES;
D O I
10.1186/s12967-023-04222-3
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Background Glioblastoma Multiforme (GBM) is a fast-growing and highly aggressive brain tumor that invades the nearby brain tissue and presents secondary nodular lesions across the whole brain but generally does not spread to distant organs. Without treatment, GBM can result in death in about 6 months. The challenges are known to depend on multiple factors: brain localization, resistance to conventional therapy, disrupted tumor blood supply inhibiting effective drug delivery, complications from peritumoral edema, intracranial hypertension, seizures, and neurotoxicity. Main text Imaging techniques are routinely used to obtain accurate detections of lesions that localize brain tumors. Especially magnetic resonance imaging (MRI) delivers multimodal images both before and after the administration of contrast, which results in displaying enhancement and describing physiological features as hemodynamic processes. This review considers one possible extension of the use of radiomics in GBM studies, one that recalibrates the analysis of targeted segmentations to the whole organ scale. After identifying critical areas of research, the focus is on illustrating the potential utility of an integrated approach with multimodal imaging, radiomic data processing and brain atlases as the main components. The templates associated with the outcome of straightforward analyses represent promising inference tools able to spatio-temporally inform on the GBM evolution while being generalizable also to other cancers. Conclusions The focus on novel inference strategies applicable to complex cancer systems and based on building radiomic models from multimodal imaging data can be well supported by machine learning and other computational tools potentially able to translate suitably processed information into more accurate patient stratifications and evaluations of treatment efficacy.
引用
收藏
页数:11
相关论文
共 90 条
[51]   Multi-Level Multi-Modality Fusion Radiomics: Application to PET and CT Imaging for Prognostication of Head and Neck Cancer [J].
Lv, Wenbing ;
Ashrafinia, Saeed ;
Ma, Jianhua ;
Lu, Lijun ;
Rahmim, Arman .
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2020, 24 (08) :2268-2277
[52]  
MacFadyen C, 2023, medRxiv, DOI [10.1101/2023.01.03.23284138, 10.1101/2023.01.03.23284138, DOI 10.1101/2023.01.03.23284138]
[53]   [18F]FDG-PET/CT Radiomics and Artificial Intelligence in Lung Cancer: Technical Aspects and Potential Clinical Applications [J].
Manafi-Farid, Reyhaneh ;
Askari, Emran ;
Shiri, Isaac ;
Pirich, Christian ;
Asadi, Mahboobeh ;
Khateri, Maziar ;
Zaidi, Habib ;
Beheshti, Mohsen .
SEMINARS IN NUCLEAR MEDICINE, 2022, 52 (06) :759-780
[54]   Lesion covariance networks reveal proposed origins and pathways of diffuse gliomas [J].
Mandal, Ayan S. ;
Romero-Garcia, Rafael ;
Seidlitz, Jakob ;
Hart, Michael G. ;
Alexander-Bloch, Aaron F. ;
Suckling, John .
BRAIN COMMUNICATIONS, 2021, 3 (04)
[55]   Genetic, cellular, and connectomic characterization of the brain regions commonly plagued by glioma [J].
Mandal, Ayan S. ;
Romero-Garcia, Rafael ;
Hart, Michael G. ;
Suckling, John .
BRAIN, 2020, 143 :3294-3307
[56]   Machine Learning of Multi-Modal Tumor Imaging Reveals Trajectories of Response to Precision Treatment [J].
Mansouri, Nesrin ;
Balvay, Daniel ;
Zenteno, Omar ;
Facchin, Caterina ;
Yoganathan, Thulaciga ;
Viel, Thomas ;
Herraiz, Joaquin Lopez ;
Tavitian, Bertrand ;
Perez-Liva, Mailyn .
CANCERS, 2023, 15 (06)
[57]   neuromaps: structural and functional interpretation of brain maps [J].
Markello, Ross D. ;
Hansen, Justine Y. ;
Liu, Zhen-Qi ;
Bazinet, Vincent ;
Shafiei, Golia ;
Suarez, Laura E. ;
Blostein, Nadia ;
Seidlitz, Jakob ;
Baillet, Sylvain ;
Satterthwaite, Theodore D. ;
Chakravarty, M. Mallar ;
Raznahan, Armin ;
Misic, Bratislav .
NATURE METHODS, 2022, 19 (11) :1472-+
[58]   An Integrative Model of Cellular States, Plasticity, and Genetics for Glioblastoma [J].
Neftel, Cyril ;
Laffy, Julie ;
Filbin, Mariella G. ;
Hara, Toshiro ;
Shore, Marni E. ;
Rahme, Gilbert J. ;
Richman, Alyssa R. ;
Silverbush, Dana ;
Shaw, McKenzie L. ;
Hebert, Christine M. ;
Dewitt, John ;
Gritsch, Simon ;
Perez, Elizabeth M. ;
Castro, L. Nicolas Gonzalez ;
Lan, Xiaoyang ;
Druck, Nicholas ;
Rodman, Christopher ;
Dionne, Danielle ;
Kaplan, Alexander ;
Bertalan, Mia S. ;
Small, Julia ;
Pelton, Kristine ;
Becker, Sarah ;
Bonal, Dennis ;
Quang-De Nguyen ;
Servis, Rachel L. ;
Fung, Jeremy M. ;
Mylvaganam, Ravindra ;
Mayr, Lisa ;
Gojo, Johannes ;
Haberler, Christine ;
Geyeregger, Rene ;
Czech, Thomas ;
Slavc, Irene ;
Nahed, Brian, V ;
Curry, William T. ;
Carter, Bob S. ;
Wakimoto, Hiroaki ;
Brastianos, Priscilla K. ;
Batchelor, Tracy T. ;
Stemmer-Rachamimov, Anat ;
Martinez-Lage, Maria ;
Frosch, Matthew P. ;
Stamenkovic, Ivan ;
Riggi, Nicolo ;
Rheinbay, Esther ;
Monje, Michelle ;
Rozenblatt-Rosen, Orit ;
Cahill, Daniel P. ;
Patel, Anoop P. .
CELL, 2019, 178 (04) :835-+
[59]   Artificial intelligence: Deep learning in oncological radiomics and challenges of interpretability and data harmonization [J].
Papadimitroulas, Panagiotis ;
Brocki, Lennart ;
Chung, Neo Christopher ;
Marchadour, Wistan ;
Vermet, Franck ;
Gaubert, Laurent ;
Eleftheriadis, Vasilis ;
Plachouris, Dimitris ;
Visvikis, Dimitris ;
Kagadis, George C. ;
Hatt, Mathieu .
PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2021, 83 :108-121
[60]  
Papanikolaou N, 2020, CANCER IMAGING, V20, DOI [10.1186/s40644-020-00311-4, 10.1177/1077559520932665]