Sasakian space form;
Legendrian submanifold;
Minimal;
C-parallel;
TOTALLY-REAL-SUBMANIFOLDS;
D O I:
10.1016/j.geomphys.2023.104790
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
It is known that Cheng-He-Hu [3] gave a complete classification of the n-dimensional C -totally real (or equivalently, Legendrian) minimal submanifolds in the (2n +1) -dimensional Sasakian space form N2n+1(c) with constant sectional curvature. According to this classification and the proof therein, such minimal Legendrian submanifolds are all of C -parallel second fundamental form. The purpose of this paper is to extend the above result partly, and as the main results, we classify all the minimal Legendrian submanifolds in N2n+1(c) with C-parallel second fundamental form in cases n = 2, 3, 4. (c) 2023 Elsevier B.V. All rights reserved.
机构:
Henan Univ Sci & Technol, Sch Math & Stat, Luoyang 471023, Peoples R ChinaHenan Univ Sci & Technol, Sch Math & Stat, Luoyang 471023, Peoples R China
Li, Cece
Xing, Cheng
论文数: 0引用数: 0
h-index: 0
机构:
Nankai Univ, Sch Math Sci, Key Lab Pure Math & Combinator LPMC, Tianjin 300071, Peoples R ChinaHenan Univ Sci & Technol, Sch Math & Stat, Luoyang 471023, Peoples R China
机构:
Princess Nourah bint Abdulrahman Univ, Fac Sci, Dept Math Sci, Riyadh 11546, Saudi ArabiaMuhayil King Khalid Univ, Coll Arts & Sci, Dept Math, Abha 9004, Saudi Arabia
Mofarreh, Fatemah
Alluhaibi, Nadia
论文数: 0引用数: 0
h-index: 0
机构:
King Abdulaziz Univ, Coll Arts & Sci, Dept Math, Rabigh Campus, Jeddah 21911, Saudi ArabiaMuhayil King Khalid Univ, Coll Arts & Sci, Dept Math, Abha 9004, Saudi Arabia
Alluhaibi, Nadia
论文数: 引用数:
h-index:
机构:
Ali, Akram
Ahmad, Iqbal
论文数: 0引用数: 0
h-index: 0
机构:
Qassim Univ Buraidah, Coll Engn, Al Qassim 51452, Saudi ArabiaMuhayil King Khalid Univ, Coll Arts & Sci, Dept Math, Abha 9004, Saudi Arabia
机构:
Tohoku Univ, Grad Sch Sci, Math Inst, Aoba Ku, Sendai, Miyagi 9808578, JapanTohoku Univ, Grad Sch Sci, Math Inst, Aoba Ku, Sendai, Miyagi 9808578, Japan