Communication-Efficient Quantum Algorithm for Distributed Machine Learning

被引:5
作者
Tang, Hao [1 ]
Li, Boning [2 ,3 ]
Wang, Guoqing [2 ,4 ]
Xu, Haowei [4 ]
Li, Changhao [2 ,4 ]
Barr, Ariel [1 ]
Cappellaro, Paola [2 ,3 ,4 ]
Li, Ju [1 ,4 ]
机构
[1] MIT, Dept Mat Sci & Engn, Massachusetts, MA 02139 USA
[2] MIT, Res Lab Elect, Cambridge, MA 02139 USA
[3] MIT, Dept Phys, Massachusetts, MA 02139 USA
[4] MIT, Dept Nucl Sci & Engn, Cambridge, MA 02139 USA
关键词
723.4 Artificial Intelligence - 723.4.2 Machine Learning - 931.4 Quantum Theory; Quantum Mechanics;
D O I
10.1103/PhysRevLett.130.150602
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The growing demands of remote detection and an increasing amount of training data make distributed machine learning under communication constraints a critical issue. This work provides a communication -efficient quantum algorithm that tackles two traditional machine learning problems, the least-square fitting and softmax regression problems, in the scenario where the dataset is distributed across two parties. Our quantum algorithm finds the model parameters with a communication complexity of O(log2(N)/e), where N is the number of data points and e is the bound on parameter errors. Compared to classical and other quantum methods that achieve the same goal, our methods provide a communication advantage in the scaling with data volume. The core of our methods, the quantum bipartite correlator algorithm that estimates the correlation or the Hamming distance of two bit strings distributed across two parties, may be further applied to other information processing tasks.
引用
收藏
页数:6
相关论文
共 47 条
[1]  
Cortese JA, 2018, Arxiv, DOI [arXiv:1803.01958, 10.48550/arxiv.1803.01958, DOI 10.48550/ARXIV.1803.01958]
[2]   Principal component analysis [J].
Abdi, Herve ;
Williams, Lynne J. .
WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2010, 2 (04) :433-459
[3]   LOWER BOUNDS ON INFORMATION-TRANSFER IN DISTRIBUTED COMPUTATIONS [J].
ABELSON, H .
JOURNAL OF THE ACM, 1980, 27 (02) :384-392
[4]  
Akella A., 2003, P WORKSH MAN PROC DA, P1
[5]   Privacy-Preserving Machine Learning: Threats and Solutions [J].
Al-Rubaie, Mohammad ;
Chang, J. Morris .
IEEE SECURITY & PRIVACY, 2019, 17 (02) :49-58
[6]  
[Anonymous], 2019, IEEE STD 754 2019 RE, P1, DOI [DOI 10.1109/IEEESTD.2019.8766229, 10.1109/IEEESTD.2019.8859679, DOI 10.1109/IEEESTD.2008.4610935]
[7]   Distributed Quantum Inner Product Estimation [J].
Anshu, Anurag ;
Landau, Zeph ;
Liu, Yunchao .
PROCEEDINGS OF THE 54TH ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING (STOC '22), 2022, :44-51
[8]  
aps, US, DOI [10.1103/PhysRevLett.130.150602, DOI 10.1103/PHYSREVLETT.130.150602]
[9]   Quantum machine learning [J].
Biamonte, Jacob ;
Wittek, Peter ;
Pancotti, Nicola ;
Rebentrost, Patrick ;
Wiebe, Nathan ;
Lloyd, Seth .
NATURE, 2017, 549 (7671) :195-202
[10]  
Bottou L., 2007, ADV NEURAL INF PROCE, V20, P161