Mechanism and optimum pressure for sliding-mode nanogenerator

被引:2
作者
Yun, Hang [1 ]
He, Ren [1 ]
机构
[1] Jiangsu Univ, Sch Automot & Traff Engn, Zhenjiang, Peoples R China
关键词
triboelectric nanogenerator; ab initio calculation; optimum pressure; recovered energy; TRIBOELECTRIC NANOGENERATOR; POLYTETRAFLUOROETHYLENE; 1ST-PRINCIPLES; ENERGY; PTFE; OPTIMIZATION; PERFORMANCE;
D O I
10.2478/pjct-2023-0006
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Triboelectric nanogenerator has extensive applicability because of its capability of harvesting mechanical energy and flexible working modes. To research the optimum pressure and improve the recovered energy of the sliding-mode triboelectric nanogenerator, a contact model of the Al/PTFE tribo-pair is studied by ab initio calculation and finite element simulation. The F-atom of PTFE is proved to be the electron accepter and the charges transferred can be predicted by Bader charge analysis. The mathematical relation between interfacial distance, charges transferred and contact pressure can be fitted. By Gauss's law, the electric field is simulated and the regeneration energy of the sliding-mode triboelectric nanogenerator can be evaluated by the total electric energy and friction loss. Finally, an optimum pressure can be set to the upper or lower limit of working pressure corresponding to larger recovered energy. And less friction coefficient and larger contact area are also effective methods for recovering energy.
引用
收藏
页码:35 / 39
页数:5
相关论文
共 24 条
[1]   Temperature-Dependent Friction and Wear Behavior of PTFE and MoS2 [J].
Babuska, T. F. ;
Pitenis, A. A. ;
Jones, M. R. ;
Nation, B. L. ;
Sawyer, W. G. ;
Argibay, N. .
TRIBOLOGY LETTERS, 2016, 63 (02)
[2]   The molecular conformations of polytetrafluoroethylene: forms II and IV [J].
Clark, ES .
POLYMER, 1999, 40 (16) :4659-4665
[3]   CALCULATION OF VANDERWAALS POTENTIAL-ENERGY FOR POLYETHYLENE AND POLYTETRAFLUOROETHYLENE AS 2-ATOM AND 3-ATOM CHAINS - ROTATIONAL FREEDOM IN CRYSTALS [J].
D'ILARIO, L ;
GIGLIO, E .
ACTA CRYSTALLOGRAPHICA SECTION B-STRUCTURAL SCIENCE, 1974, 30 (FEB15) :372-378
[4]   Transient physical modeling and comprehensive optimal design of air-breakdown direct-current triboelectric nanogenerators [J].
Dai, Keren ;
Liu, Di ;
Yin, Yajiang ;
Wang, Xiaofeng ;
Wang, Jie ;
You, Zheng ;
Zhang, He ;
Wang, Zhong Lin .
NANO ENERGY, 2022, 92
[5]   Ab Initio Study of Polytetrafluoroethylene Defluorination for Tribocharging Applications [J].
Fatti, Giulio ;
Righi, Maria Clelia ;
Dini, Daniele ;
Ciniero, Alessandra .
ACS APPLIED POLYMER MATERIALS, 2020, 2 (11) :5129-5134
[6]   First-Principles Study of the Charge Distributions in Water Confined between Dissimilar Surfaces and Implications in Regard to Contact Electrification [J].
Fu, Rui ;
Shen, Xiaozhou ;
Lacks, Daniel J. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2017, 121 (22) :12345-12349
[7]   Structural Optimization of Triboelectric Nanogenerator for Harvesting Water Wave Energy [J].
Jiang, Tao ;
Zhang, Li Min ;
Chen, Xiangyu ;
Han, Chang Bao ;
Tang, Wei ;
Zhang, Chi ;
Xu, Liang ;
Wang, Zhong Lin .
ACS NANO, 2015, 9 (12) :12562-12572
[8]   Nonlinear potential field in contact electrification [J].
Kulbago, Benjamin J. ;
Chen, James .
JOURNAL OF ELECTROSTATICS, 2020, 108
[9]   A constant current triboelectric nanogenerator arising from electrostatic breakdown [J].
Liu, Di ;
Yin, Xing ;
Guo, Hengyu ;
Zhou, Linglin ;
Li, Xinyuan ;
Zhang, Chunlei ;
Wang, Jie ;
Wang, Zhong Lin .
SCIENCE ADVANCES, 2019, 5 (04)
[10]   Triboelectric Nanogenerator With Enhanced Performance via an Optimized Low Permittivity Substrate [J].
Min, Gunabo ;
Manjakkal, Libu ;
Mulvihill, Daniel M. ;
Dahiya, Ravinder S. .
IEEE SENSORS JOURNAL, 2020, 20 (13) :6856-6862