Cellulose Nanocrystal-Based All-3D-Printed Pyro-Piezoelectric Nanogenerator for Hybrid Energy Harvesting and Self-Powered Cardiorespiratory Monitoring toward the Human-Machine Interface

被引:49
作者
Saha, Mrinal C. [1 ]
Maity, Kuntal [1 ]
Mondal, Anirban [1 ]
机构
[1] Univ Oklahoma, Sch Aerosp & Mech Engn, Norman, OK 73019 USA
关键词
piezoelectric biomaterials; cellulose nanocrystals; pyro-piezoelectric nanogenerator; hybrid energy harvesting; cardiorespiratory monitoring; self-powered biomedical device; human-machine interface; ELECTRONICS; DISCOVERY; DEVICES; SKIN;
D O I
10.1021/acsami.2c21680
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Biomaterials with spontaneous piezoelectric property are highly emerging in recent times for the generation of electricity from mechanical energy sources that are amply available in nature. In this context, pyroelectricity, an integral property of piezoelectric materials, might be an interesting tool in harvesting thermal energy from the fluctuations of temperature. On the other hand, respiration and heart pulse are the significant human vital signs that can be used for early detection and prevention of cardiorespiratory diseases. Here, we report an all-three-dimensional (3D)-printed pyro-piezoelectric nanogenerator (Py-PNG) based on the most abundant and completely biodegradable biopolymer on earth, i.e., cellulose nanocrystal (CNC) for hybrid (mechanical as well as thermal) energy harvesting, and interestingly, the NG could be used as an e -skin sensor for application in self-powered noninvasive cardiorespiratory monitoring for personal healthcare. Notably, the CNC-based device will be biocompatible and economically advantageous due to its biomaterial-based supremacy and huge availability. This is an original approach with 3D geometrical advancement in designing a NG/sensor, where the unique all-3D-printed manner is adopted, and certainly, it has promising potential in reducing the number of processing steps to required equipment during the multilayer fabrication. The all-3D-printed NG/sensor shows outstanding mechano-thermal energy harvesting performance along with sensitivity and is capable of accurate detection of heart pulse as well as respiration, whenever and whichever required without the need of any battery or an external power supply. In addition, we have also extended its application in demonstrating a smart mask-based breath monitoring system. Thus, the real-time cardiorespiratory monitoring provides notable and fascinating information in medical diagnosis, stepping toward biomedical device development and human???machine interface.
引用
收藏
页码:13956 / 13970
页数:15
相关论文
共 53 条
[1]   Respiration Rate Monitoring Methods: A Review [J].
AL-Khalidi, F. Q. ;
Saatchi, R. ;
Burke, D. ;
Elphick, H. ;
Tan, S. .
PEDIATRIC PULMONOLOGY, 2011, 46 (06) :523-529
[2]  
Antzelevitch Charles, 2011, Card Electrophysiol Clin, V3, P23, DOI 10.1016/j.ccep.2010.10.012
[3]  
Anzar N., 2020, SENSORS INT, V1, DOI [10.1016/j.sintl.2020.100003, DOI 10.1016/J.SINTL.2020.100003]
[4]   The diagnostic accuracy of lung auscultation in adult patients with acute pulmonary pathologies: a meta-analysis [J].
Arts, Luca ;
Lim, Endry Hartono Taslim ;
van de Ven, Peter Marinus ;
Heunks, Leo ;
Tuinman, Pieter R. .
SCIENTIFIC REPORTS, 2020, 10 (01)
[5]   Arterial blood pressure measurement and pulse wave analysis-their role in enhancing cardiovascular assessment [J].
Avolio, Alberto P. ;
Butlin, Mark ;
Walsh, Andrew .
PHYSIOLOGICAL MEASUREMENT, 2010, 31 (01) :R1-R47
[6]   Pyroelectric materials and devices for energy harvesting applications [J].
Bowen, C. R. ;
Taylor, J. ;
LeBoulbar, E. ;
Zabek, D. ;
Chauhan, A. ;
Vaish, R. .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (12) :3836-3856
[7]   Piezoelectric and ferroelectric materials and structures for energy harvesting applications [J].
Bowen, C. R. ;
Kim, H. A. ;
Weaver, P. M. ;
Dunn, S. .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (01) :25-44
[8]   Additive Manufacturing of Piezoelectric Materials [J].
Chen, Cheng ;
Wang, Xi ;
Wang, Yan ;
Yang, Dandan ;
Yao, Fangyi ;
Zhang, Wenxiong ;
Wang, Bo ;
Sewvandi, Galhenage Asha ;
Yang, Desuo ;
Hu, Dengwei .
ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (52)
[9]   3D-Printing of Lightweight Cellular Composites [J].
Compton, Brett G. ;
Lewis, Jennifer A. .
ADVANCED MATERIALS, 2014, 26 (34) :5930-+
[10]   Thermal energy harvesting through pyroelectricity [J].
Cuadras, A. ;
Gasulla, M. ;
Ferrari, V. .
SENSORS AND ACTUATORS A-PHYSICAL, 2010, 158 (01) :132-139