Validation of an administrative algorithm for transgender and gender diverse persons against self-report data in electronic health records

被引:11
作者
Streed Jr, Carl G. [1 ,2 ,3 ]
King, Dana [3 ]
Grasso, Chris [3 ]
Reisner, Sari L. [3 ,4 ,5 ]
Mayer, Kenneth H. [3 ,6 ]
Jasuja, Guneet K. [1 ,7 ,8 ]
Poteat, Tonia [9 ]
Mukherjee, Monica [10 ]
Shapira-Daniels, Ayelet [11 ]
Cabral, Howard [12 ]
Tangpricha, Vin [13 ]
Paasche-Orlow, Michael K. [14 ]
Benjamin, Emelia J. [15 ,16 ,17 ,18 ,19 ]
机构
[1] Boston Univ, Chobanian & Avedisian Sch Med, Sect Gen Internal Med, Boston, MA USA
[2] Ctr Transgender Med & Surg, Boston Med Ctr, Boston, MA USA
[3] Fenway Hlth, Fenway Inst, Boston, MA USA
[4] Harvard Med Sch, Brigham & Womens Hosp, Dept Med, Boston, MA USA
[5] Harvard TH Chan Sch Publ Hlth, Dept Epidemiol, Boston, MA USA
[6] Harvard Med Sch, Beth Israel Deaconess Med Ctr, Dept Med, Boston, MA USA
[7] VA Bedford Healthcare Syst, Ctr Healthcare Org & Implementat Res, Bedford, MA USA
[8] Boston Univ, Dept Hlth Law Policy & Management, Sch Publ Hlth, Boston, MA USA
[9] Univ North Carolina Chapel Hill, Dept Social Med, Chapel Hill, NC USA
[10] Johns Hopkins Univ, Dept Med, Div Cardiol, Baltimore, MD USA
[11] Boston Med Ctr, Dept Med, Boston, MA USA
[12] Boston Univ, Sch Publ Hlth, Dept Biostat, Boston, MA USA
[13] Emory Univ, Sch Med, Dept Med, Div Endocrinol Metab & Lipids, Boston, MA USA
[14] Tufts Med Ctr, Dept Med, Boston, MA USA
[15] Boston Univ, Dept Med, Sect Cardiovasc Med, Sch Med, Boston, MA USA
[16] Boston Med Ctr, Boston, MA USA
[17] Boston Univ, Framingham, MA USA
[18] Natl Heart Lung & Blood Inst Framingham Heart St, Framingham, MA USA
[19] Boston Univ, Dept Epidemiol, Sch Publ Hlth, Boston, MA USA
关键词
transgender; gender identity; diagnosis codes; electronic health record; IDENTITY DATA-COLLECTION; SEXUAL ORIENTATION; INDIVIDUALS; CARE;
D O I
10.1093/jamia/ocad039
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Objective To adapt and validate an algorithm to ascertain transgender and gender diverse (TGD) patients within electronic health record (EHR) data. Methods Using a previously unvalidated algorithm of identifying TGD persons within administrative claims data in a multistep, hierarchical process, we validated this algorithm in an EHR data set with self-reported gender identity. Results Within an EHR data set of 52 746 adults with self-reported gender identity (gold standard) a previously unvalidated algorithm to identify TGD persons via TGD-related diagnosis and procedure codes, and gender-affirming hormone therapy prescription data had a sensitivity of 87.3% (95% confidence interval [CI] 86.4-88.2), specificity of 98.7% (95% CI 98.6-98.8), positive predictive value (PPV) of 88.7% (95% CI 87.9-89.4), and negative predictive value (NPV) of 98.5% (95% CI 98.4-98.6). The area under the curve (AUC) was 0.930 (95% CI 0.925-0.935). Steps to further categorize patients as presumably TGD men versus women based on prescription data performed well: sensitivity of 97.6%, specificity of 92.7%, PPV of 93.2%, and NPV of 97.4%. The AUC was 0.95 (95% CI 0.94-0.96). Conclusions In the absence of self-reported gender identity data, an algorithm to identify TGD patients in administrative data using TGD-related diagnosis and procedure codes, and gender-affirming hormone prescriptions performs well.
引用
收藏
页码:1047 / 1055
页数:9
相关论文
共 52 条
  • [51] White Hughto Jaclyn M, 2016, Transgend Health, V1, P21
  • [52] Validating Data-Driven Methods for Identifying Transgender Individuals in the Veterans Health Administration of the US Department of Veterans Affairs
    Wolfe, Hill L.
    Reisman, Joel, I
    Yoon, Samuel S.
    Blosnich, John R.
    Shipherd, Jillian C.
    Vimalananda, Varsha G.
    Rao, Sowmya R.
    Hashemi, Leila
    Berlowitz, Dan
    Goodman, Michael
    Livingston, Nicholas A.
    Reece, Scott G.
    Jasuja, Guneet K.
    [J]. AMERICAN JOURNAL OF EPIDEMIOLOGY, 2021, 190 (09) : 1928 - 1934