Vision-Based Autonomous Following of a Moving Platform and Landing for an Unmanned Aerial Vehicle

被引:12
|
作者
Morales, Jesus [1 ]
Castelo, Isabel [2 ]
Serra, Rodrigo [2 ]
Lima, Pedro U. [2 ]
Basiri, Meysam [2 ]
机构
[1] Univ Malaga, Inst Mechatron Engn & Cyber Phys Syst IMECH, Malaga 29071, Spain
[2] Univ Lisbon, Inst Super Tecn IST, P-1049001 Lisbon, Portugal
关键词
unmanned aerial vehicle; unmanned ground vehicle; autonomous landing; target following; pose estimation; artificial fiducial markers; cascade loop;
D O I
10.3390/s23020829
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Interest in Unmanned Aerial Vehicles (UAVs) has increased due to their versatility and variety of applications, however their battery life limits their applications. Heterogeneous multi-robot systems can offer a solution to this limitation, by allowing an Unmanned Ground Vehicle (UGV) to serve as a recharging station for the aerial one. Moreover, cooperation between aerial and terrestrial robots allows them to overcome other individual limitations, such as communication link coverage or accessibility, and to solve highly complex tasks, e.g., environment exploration, infrastructure inspection or search and rescue. This work proposes a vision-based approach that enables an aerial robot to autonomously detect, follow, and land on a mobile ground platform. For this purpose, ArUcO fiducial markers are used to estimate the relative pose between the UAV and UGV by processing RGB images provided by a monocular camera on board the UAV. The pose estimation is fed to a trajectory planner and four decoupled controllers to generate speed set-points relative to the UAV. Using a cascade loop strategy, these set-points are then sent to the UAV autopilot for inner loop control. The proposed solution has been tested both in simulation, with a digital twin of a solar farm using ROS, Gazebo and Ardupilot Software-in-the-Loop (SiL); and in the real world at IST Lisbon's outdoor facilities, with a UAV built on the basis of a DJ550 Hexacopter and a modified Jackal ground robot from DJI and Clearpath Robotics, respectively. Pose estimation, trajectory planning and speed set-point are computed on board the UAV, using a Single Board Computer (SBC) running Ubuntu and ROS, without the need for external infrastructure.
引用
收藏
页数:18
相关论文
共 50 条
  • [11] Vision-Based Autonomous Landing of a Multi-Copter Unmanned Aerial Vehicle using Reinforcement Learning
    Lee, Seongheon
    Shim, Taemin
    Kim, Sungjoong
    Park, Junwoo
    Hong, Kyungwoo
    Bang, Hyochoong
    2018 INTERNATIONAL CONFERENCE ON UNMANNED AIRCRAFT SYSTEMS (ICUAS), 2018, : 108 - 114
  • [12] A hierarchical vision-based localization of rotor unmanned aerial vehicles for autonomous landing
    Yuan, Haiwen
    Xiao, Changshi
    Xiu, Supu
    Zhan, Wenqiang
    Ye, Zhenyi
    Zhang, Fan
    Zhou, Chunhui
    Wen, Yuanqiao
    Li, Qiliang
    INTERNATIONAL JOURNAL OF DISTRIBUTED SENSOR NETWORKS, 2018, 14 (09):
  • [13] Research of Autonomous Vision-Based Absolute Navigation for Unmanned Aerial Vehicle
    Huang Lan
    Song Jianmei
    2016 14TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION, ROBOTICS AND VISION (ICARCV), 2016,
  • [14] Vision-Based Autonomous Landing for Unmanned Aerial and Ground Vehicles Cooperative Systems
    Niu, Guanchong
    Yang, Qingkai
    Gao, Yunfan
    Pun, Man-On
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2022, 7 (03) : 6234 - 6241
  • [15] Estimating pitch attitude and altitude of unmanned aerial vehicle vision-based landing
    Pan, Xiang
    Ma, De-Qiang
    Wu, Yi-Jun
    Zhang, Guang-Fu
    Jiang, Zhe-Sheng
    Zhejiang Daxue Xuebao (Gongxue Ban)/Journal of Zhejiang University (Engineering Science), 2009, 43 (04): : 692 - 696
  • [16] Vision-Based Autonomous Landing of a Quadrotor on the Perturbed Deck of an Unmanned Surface Vehicle
    Polvara, Riccardo
    Sharma, Sanjay
    Wan, Jian
    Manning, Andrew
    Sutton, Robert
    DRONES, 2018, 2 (02) : 1 - 18
  • [17] Vision-based Autonomous Landing Control for Unmanned Helicopters
    Marantos, Panos
    Karras, George C.
    Vlantis, Panagiotis
    Kyriakopoulos, Kostas J.
    JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 2018, 92 (01) : 145 - 158
  • [18] Vision-based Autonomous Landing Control for Unmanned Helicopters
    Panos Marantos
    George C. Karras
    Panagiotis Vlantis
    Kostas J. Kyriakopoulos
    Journal of Intelligent & Robotic Systems, 2018, 92 : 145 - 158
  • [19] Autonomous landing of a quadrotor on a moving platform using vision-based FOFPID control
    Ghasemi, Ali
    Parivash, Farhad
    Ebrahimian, Serajeddin
    ROBOTICA, 2022, 40 (05) : 1431 - 1449
  • [20] A real-time vision-based guided method for autonomous landing of a rotor-craft unmanned aerial vehicle
    Yuan, Zhengpeng
    Gong, Zhenbang
    Wu, Jiaqi
    Chen, Jinbo
    Rao, Jinjun
    2005 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS AND AUTOMATIONS, VOLS 1-4, CONFERENCE PROCEEDINGS, 2005, : 2212 - 2215