Multiparametric MRI-based radiomics for the prediction of microvascular invasion in hepatocellular carcinoma

被引:8
作者
Jiang, Tao [1 ]
He, Shuai [2 ]
Yang, Huazhe [3 ]
Dong, Yue [2 ]
Yu, Tao [2 ]
Luo, Yahong [2 ]
Jiang, Xiran [1 ]
机构
[1] China Med Univ, Dept Biomed Engn, Shenyang, Peoples R China
[2] China Med Univ, Liaoning Canc Hosp & Inst, Dept Radiol, Canc Hosp, Shenyang, Peoples R China
[3] China Med Univ, Sch Fundamental Sci, Dept Biophys, Shenyang, Peoples R China
基金
中国国家自然科学基金;
关键词
Microvascular invasion; hepatocellular carcinoma; magnetic resonance imaging; radiomics; nomogram; PREOPERATIVE PREDICTION; ALPHA-FETOPROTEIN; TUMOR SIZE; TRANSPLANTATION; HEPATECTOMY; METASTASIS; RECURRENCE; RESECTION; NOMOGRAM; SURVIVAL;
D O I
10.1177/02841851221080830
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Background Preoperative prediction of microvascular invasion (MVI) in hepatocellular carcinoma (HCC) is essential in obtaining a successful surgical treatment, in decreasing recurrence, and in improving survival. Purpose To investigate the value of multiparametric magnetic resonance imaging (MRI)-based radiomics in the prediction of peritumoral MVI in HCC. Material and Methods A total of 102 patient with pathologically proven HCC after surgical resection from June 2014 to March 2018 were enrolled in this retrospective study. Histological analysis of resected specimens confirmed positive MVI in 48 patients and negative MVI in 54 patients. Radiomics features were extracted from four MRI sequences and selected with the least absolute shrinkage and selection operator (LASSO) regression and used to analyze the tumoral and peritumoral regions for MVI. Univariate logistic regression was employed to identify the most important clinical factors, which were integrated with the radiomics signature to develop a nomogram. Results In total, 11 radiomics features were selected and used to build the radiomics signature. The serum level of alpha-fetoprotein was identified as the clinical factor with the highest predictive value. The developed nomogram achieved the highest AUC in predicting MVI status. The decision curve analysis confirmed the potential clinical utility of the proposed nomogram. Conclusion The multiparametric MRI-based radiomics nomogram is a promising tool for the preoperative diagnosis of peritumoral MVI in HCCs and helps determine the appropriate medical or surgical therapy.
引用
收藏
页码:456 / 466
页数:11
相关论文
共 42 条
[1]   A computed tomography radiogenomic biomarker predicts microvascular invasion and clinical outcomes in hepatocellular carcinoma [J].
Banerjee, Sudeep ;
Wang, David S. ;
Kim, Hyun J. ;
Sirlin, Claude B. ;
Chan, Michael G. ;
Korn, Ronald L. ;
Rutman, Aaron M. ;
Siripongsakun, Surachate ;
Lu, David ;
Imanbayev, Galym ;
Kuo, Michael D. .
HEPATOLOGY, 2015, 62 (03) :792-800
[2]  
BRAY F, 2018, CA-CANCER J CLIN, V68, P394, DOI [DOI 10.3322/CANJCLIN.49.1.33, DOI 10.3322/CAAC.21492]
[3]   Microvascular Invasion in Hepatocellular Carcinoma: Is It Predictable With Pretransplant MRI? [J].
Chandarana, Hersh ;
Robinson, Emma ;
Hajdu, Cristina H. ;
Drozhinin, Leonid ;
Babb, James S. ;
Taouli, Bachir .
AMERICAN JOURNAL OF ROENTGENOLOGY, 2011, 196 (05) :1083-1089
[4]   Metastasis: recent discoveries and novel treatment strategies [J].
Eccles, Suzanne A. ;
Welch, Danny R. .
LANCET, 2007, 369 (9574) :1742-1757
[5]   Preoperative prediction of microvascular invasion in hepatocellular cancer: a radiomics model using Gd-EOB-DTPA-enhanced MRI [J].
Feng, Shi-Ting ;
Jia, Yingmei ;
Liao, Bing ;
Huang, Bingsheng ;
Zhou, Qian ;
Li, Xin ;
Wei, Kaikai ;
Chen, Lili ;
Li, Bin ;
Wang, Wei ;
Chen, Shuling ;
He, Xiaofang ;
Wang, Haibo ;
Peng, Sui ;
Chen, Ze-Bin ;
Tang, Mimi ;
Chen, Zhihang ;
Hou, Yang ;
Peng, Zhenwei ;
Kuang, Ming .
EUROPEAN RADIOLOGY, 2019, 29 (09) :4648-4659
[6]   Radiomics: Images Are More than Pictures, They Are Data [J].
Gillies, Robert J. ;
Kinahan, Paul E. ;
Hricak, Hedvig .
RADIOLOGY, 2016, 278 (02) :563-577
[7]   Comparative 13-year meta-analysis of the sensitivity and positive predictive value of ultrasound, CT, and MRI for detecting hepatocellular carcinoma [J].
Hanna, Robert F. ;
Miloushev, Vesselin Z. ;
Tang, An ;
Finklestone, Lee A. ;
Brejt, Sidney Z. ;
Sandhu, Ranjit S. ;
Santillan, Cynthia S. ;
Wolfson, Tanya ;
Gamst, Anthony ;
Sirlin, Claude B. .
ABDOMINAL RADIOLOGY, 2016, 41 (01) :71-90
[8]   MRI-based radiomics signature for tumor grading of rectal carcinoma using random forest model [J].
He, Bo ;
Ji, Tao ;
Zhang, Hong ;
Zhu, Yun ;
Shu, Ruo ;
Zhao, Wei ;
Wang, Kunhua .
JOURNAL OF CELLULAR PHYSIOLOGY, 2019, 234 (11) :20501-20509
[9]   Hepatocellular carcinoma depicted as hypoattenuation on CT hepatic arteriography (CTA) and hyperattenuation on CT during arterial portography (CTAP) [J].
Hirano, K ;
Kondo, Y ;
Teratani, T ;
Obi, S ;
Fujishima, T ;
Hoshida, Y ;
Tateishi, R ;
Sato, S ;
Koike, Y ;
Shiina, S ;
Imai, Y ;
Shiratori, Y ;
Omata, M .
JOURNAL OF GASTROENTEROLOGY, 2001, 36 (05) :346-349
[10]   Microvascular invasion patterns affect survival in hepatocellular carcinoma patients after second hepatectomy [J].
Hou, Yi-fu ;
Wei, Yong-gang ;
Yang, Jia-yin ;
Wen, Tian-fu ;
Xu, Ming-qing ;
Yan, Lv-nan ;
Li, Bo ;
Chen, Ke-fei .
JOURNAL OF SURGICAL RESEARCH, 2016, 200 (01) :82-90