Transforming Scene Text Detection and Recognition: A Multi-Scale End-to-End Approach With Transformer Framework

被引:0
|
作者
Geng, Tianyu [1 ]
机构
[1] Nanjing Tech Univ, Coll Artificial Intelligence, Coll Comp & Informat Engn, Nanjing 211816, Jiangsu, Peoples R China
关键词
Text recognition; text recognition; transformer; end-to-end; multi-scale;
D O I
10.1109/ACCESS.2024.3375497
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Text is an essential means for humans to acquire information and engage in social communication. Accurate text extraction from images is crucial for various tasks in real-life scenarios and scene understanding. However, text detection and recognition in natural scenes are challenged by noise in the images, irregular distribution of text fonts, and degradation of image quality under complex acquisition conditions. These factors severely impact the accuracy of text recognition. Issues such as poor image quality, diverse text formats, and complex image backgrounds significantly affect the accuracy of the recognition, and these challenges remain urgent to be addressed in the field. To address these challenges, this paper proposes a transformer-based scene image text detection and recognition algorithm within a multi-scale end-to-end framework. Firstly, by integrating detection and recognition stages into an end-to-end framework, the process is simplified, reducing computation and errors. Subsequently, multi-scale characteristics are incorporated to effectively capture text information at various scales, enhancing recognition accuracy and robustness through feature fusion and anti-interference capability. Lastly, leveraging the transformer framework, the algorithm efficiently handles text information of different scales and positions, improving generalization ability. The self-attention mechanism, multi-layer stacking structure, and positional encoding in the transformer framework contribute to its effectiveness in processing diverse text information. Through validation, the proposed method demonstrates improved efficiency in scene text detection and recognition.
引用
收藏
页码:40582 / 40596
页数:15
相关论文
共 50 条
  • [1] Transformer-based end-to-end scene text recognition
    Zhu, Xinghao
    Zhang, Zhi
    PROCEEDINGS OF THE 2021 IEEE 16TH CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA 2021), 2021, : 1691 - 1695
  • [2] End-to-End Analysis for Text Detection and Recognition in Natural Scene Images
    Alnefaie, Ahlam
    Gupta, Deepak
    Bhuyan, Monowar H.
    Razzak, Imran
    Gupta, Prashant
    Prasad, Mukesh
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [3] RMFPN: End-to-End Scene Text Recognition Using Multi-Feature Pyramid Network
    Mahadshetti, Ruturaj
    Lee, Guee-Sang
    Choi, Deok-Jai
    IEEE ACCESS, 2023, 11 : 61892 - 61900
  • [4] EEM: An End-to-end Evaluation Metric for Scene Text Detection and Recognition
    Hao, Jiedong
    Wen, Yafei
    Deng, Jie
    Gan, Jun
    Ren, Shuai
    Tan, Hui
    Chen, Xiaoxin
    DOCUMENT ANALYSIS AND RECOGNITION, ICDAR 2021, PT IV, 2021, 12824 : 95 - 108
  • [5] AMTT: An End-to-End Anchor-Based Multi-Scale Transformer Tracking Method
    Zheng, Yitao
    Deng, Honggui
    Xu, Qiguo
    Li, Ni
    ELECTRONICS, 2024, 13 (14)
  • [6] Improvement of the end-to-end scene text recognition method for "text-to-speech" conversion
    Makhmudov, Fazliddin
    Mukhiddinov, Mukhriddin
    Abdusalomov, Akmalbek
    Avazov, Kuldoshbay
    Khamdamov, Utkir
    Cho, Young Im
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2020, 18 (06)
  • [7] END-TO-END MULTI-SPEAKER SPEECH RECOGNITION WITH TRANSFORMER
    Chang, Xuankai
    Zhang, Wangyou
    Qian, Yanmin
    Le Roux, Jonathan
    Watanabe, Shinji
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 6134 - 6138
  • [8] Efficient Neural Network for Text Recognition in Natural Scenes Based on End-to-End Multi-Scale Attention Mechanism
    Peng, Huiling
    Yu, Jia
    Nie, Yalin
    ELECTRONICS, 2023, 12 (06)
  • [9] END-TO-END CHINESE TEXT RECOGNITION
    Hu, Jie
    Guo, Tszhang
    Cao, Ji
    Zhang, Changshui
    2017 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP 2017), 2017, : 1407 - 1411
  • [10] A Novel End-to-End Transformer for Scene Graph Generation
    Ren, Chengkai
    Liu, Xiuhua
    Cao, Mengyuan
    Zhang, Jian
    Wang, Hongwei
    2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,