Classification of generalised higher-order Einstein-Maxwell Lagrangians

被引:4
|
作者
Colleaux, Aimeric [1 ]
Langlois, David [2 ]
Noui, Karim [3 ]
机构
[1] Open Univ Israel, Astrophys Res Ctr, Raanana, Israel
[2] Univ Paris Cite, Astroparticule & Cosmol, CNRS, F-75013 Paris, France
[3] Univ Paris Saclay, Lab Phys deux Infinis IJCLab, CNRS, Orsay, France
关键词
Classical Theories of Gravity; Gauge Symmetry; Effective Field Theories; DERIVATIVE EXPANSION; FIELD; ELECTRODYNAMICS;
D O I
10.1007/JHEP03(2024)041
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We classify all higher-order generalised Einstein-Maxwell Lagrangians that include terms linear in the curvature tensor and quadratic in the derivatives of the electromagnetic field strength tensor. Using redundancies due to the Bianchi identities, dimensionally dependent identities and boundary terms, we show that a general Lagrangian of this form can always be reduced to a linear combination of only 21 terms, with coefficients that are arbitrary functions of the two scalar invariants derived from the field strength. We give an explicit choice of basis where these 21 terms include 3 terms linear in the Riemann tensor and 18 terms quadratic in the derivatives of the field strength.
引用
收藏
页数:24
相关论文
共 50 条
  • [1] Degenerate higher-order Maxwell theories in flat space-time
    Colleaux, Aimeric
    Langlois, David
    Noui, Karim
    JOURNAL OF HIGH ENERGY PHYSICS, 2024, (10):
  • [2] Electrostatic induction in Einstein-Maxwell theory
    Bonnor, W. B.
    Steadman, B. R.
    GENERAL RELATIVITY AND GRAVITATION, 2011, 43 (06) : 1777 - 1786
  • [3] The nuts and bolts of Einstein-Maxwell solutions
    Bobev, Nikolay
    Ruef, Clement
    JOURNAL OF HIGH ENERGY PHYSICS, 2010, (01):
  • [4] The effective action in Einstein-Maxwell theory
    Bastianelli, F.
    Manuel Davila, Jose
    Schubert, C.
    PARTICLES AND FIELDS, 2009, 1116 : 343 - +
  • [5] Einstein-Maxwell Equations for Homogeneous Spaces
    Obukhov, V. V.
    Kartashov, D. V.
    RUSSIAN PHYSICS JOURNAL, 2024, 67 (02) : 193 - 197
  • [6] Hilbert series and higher-order Lagrangians for the O(N) model
    Johan Bijnens
    Sven Bjarke Gudnason
    Jiahui Yu
    Tiantian Zhang
    Journal of High Energy Physics, 2023
  • [7] Hilbert series and higher-order Lagrangians for the O(N) model
    Bijnens, Johan
    Gudnason, Sven Bjarke
    Yu, Jiahui
    Zhang, Tiantian
    JOURNAL OF HIGH ENERGY PHYSICS, 2023, 2023 (05)
  • [8] Asymptotic structure of the Einstein-Maxwell theory on AdS3
    Perez, Alfredo
    Riquelme, Miguel
    Tempo, David
    Troncoso, Ricardo
    JOURNAL OF HIGH ENERGY PHYSICS, 2016, (02): : 1 - 17
  • [9] What Are Observables in Hamiltonian Einstein-Maxwell Theory?
    Pitts, J. Brian
    FOUNDATIONS OF PHYSICS, 2019, 49 (08) : 786 - 796
  • [10] The first law of black hole mechanics in the Einstein-Maxwell theory revisited
    Elgood, Zachary
    Meessen, Patrick
    Ortin, Tomas
    JOURNAL OF HIGH ENERGY PHYSICS, 2020, 2020 (09)