Realization of multifunctional transformation based on the vanadium dioxide-assisted metamaterial structure

被引:6
|
作者
Weng, Xuehui [1 ]
Yan, Dexian [1 ]
Qiu, Yu [1 ]
Li, Xiangjun [1 ]
Zhang, Le [1 ]
Li, Jining [2 ]
机构
[1] China Jiliang Univ, Coll Informat Engn, Key Lab Electromagnet Wave Informat Technol & Metr, Hangzhou 310018, Zhejiang, Peoples R China
[2] Tianjin Univ, Coll Precis Instrument & Optoelect Engn, Tianjin 300072, Peoples R China
基金
中国国家自然科学基金;
关键词
VO2;
D O I
10.1039/d3cp06105a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this paper, a multifunctional device and a design method are proposed based on the vanadium dioxide (VO2)-assisted metamaterial structure. The structure comprises several layers arranged from top to bottom, including a VO2 patch layer, a polyimide (PI) dielectric layer, an elliptical metal layer, a VO2 thin film layer, another PI dielectric layer, and a bottom metal layer. The research results show that the metamaterial structure enables linear-to-linear (LTL) polarization conversion and linear-to-circular (LTC) polarization conversion across multiple frequency bands when the VO2 is in the insulating state. Moreover, as the VO2 material undergoes a transition from the insulating state to the metallic state, the multifunctional structure can function as a broadband absorber, exhibiting an absorption rate of over 90% within the frequency range of 1.751-3.853 THz, with a relative bandwidth of 75%. This versatile conversion device holds great potential for applications in terahertz system and smart system fields. A multifunctional device and a design method are proposed based on the vanadium dioxide (VO2)-assisted metamaterial structure.
引用
收藏
页码:8247 / 8254
页数:8
相关论文
共 50 条
  • [31] Metamaterial Absorber with Tunable Absorption Bandwidth Based on Vanadium Dioxide
    Jiang Xiaowei
    Wang Sheng
    Wu Hua
    ACTA PHOTONICA SINICA, 2022, 51 (01)
  • [32] Visible Light Metamaterial Saturable Absorber Based on Vanadium Dioxide
    Zheng Yi
    Qiu Haoxue
    Li Yan
    Pan Yuzhai
    ACTA OPTICA SINICA, 2022, 42 (15)
  • [33] Tunable broadband terahertz metamaterial absorber based on vanadium dioxide
    Yang, Guishuang
    Yan, Fengping
    Du, Xuemei
    Li, Ting
    Wang, Wei
    Lv, Yuling
    Zhou, Hong
    Hou, Yafei
    AIP ADVANCES, 2022, 12 (04)
  • [34] Vanadium Dioxide-Based Bifunctional Metamaterial for Terahertz Waves
    Zhang, Man
    Zhang, Jiahe
    Chen, Apeng
    Song, Zhengyong
    IEEE PHOTONICS JOURNAL, 2020, 12 (01):
  • [35] Multifunctional terahertz absorber based on the Dirac semimetal and vanadium dioxide
    Zhang, Yong Gang
    Zhang, R. U., I
    Liang, Lan Ju
    Yao, Hai Yun
    Yan, Xin
    Huang, Cheng Cheng
    Ying, Ke Hao
    APPLIED OPTICS, 2023, 62 (03) : 813 - 819
  • [36] Multifunctional and tunable terahertz coding metasurfaces based on vanadium dioxide
    Xiao, Binggang
    Chen, Haona
    Liu, Jinrong
    Yu, Jiabin
    Xiao, Lihua
    OPTICS COMMUNICATIONS, 2023, 549
  • [37] Switchable Multifunctional Metasurfaces Based on Vanadium Dioxide in the Terahertz Region
    Liu, Shilei
    Ma, JiaJun
    Li, Hongyi
    Liu, Yi
    Ouyang, Chunmei
    2022 IEEE 7TH OPTOELECTRONICS GLOBAL CONFERENCE, OGC, 2022, : 261 - 264
  • [38] A bidirectional broadband multifunctional terahertz device based on vanadium dioxide
    Li, Tong
    Liang, Xiangan
    Bao, Chengqing
    Huang, Pan
    He, Qian
    Song, Guofeng
    INFRARED PHYSICS & TECHNOLOGY, 2024, 141
  • [39] Dynamically switchable broadband-narrowband terahertz metamaterial absorber based on vanadium dioxide and multilayered structure
    Wen, Jin
    Sun, Wei
    Liang, Bozhi
    He, Chenyao
    Xiong, Keyu
    Wu, Zhengwei
    Zhang, Hui
    Yu, Huimin
    Wang, Qian
    Pan, Yu
    Zhang, Ying
    Liu, Zhanzhi
    OPTICS COMMUNICATIONS, 2023, 545
  • [40] Switchable and tunable terahertz metamaterial absorber based on graphene and vanadium dioxide
    Li, Dezhi
    He, Shen
    Su, Li
    Du, Haitao
    Tian, Ye
    Gao, Ziqi
    Xie, Bowen
    Huang, Guoqi
    OPTICAL MATERIALS, 2024, 147