Active Anomaly Detection for Autonomous Robots: A Benchmark

被引:0
作者
Mantegazza, Dario [1 ]
Xhyra, Alind [2 ,3 ]
Giusti, Alessandro [1 ]
Guzzi, Jerome [1 ]
机构
[1] USI SUPSI, Dalle Molle Inst Artificial Intelligence IDSIA, Lugano, Switzerland
[2] Constructor Univ, Schaffhausen, Switzerland
[3] Univ Svizzera Italiana, Lugano, Switzerland
来源
TOWARDS AUTONOMOUS ROBOTIC SYSTEMS, TAROS 2023 | 2023年 / 14136卷
基金
瑞士国家科学基金会;
关键词
Visual Anomaly Detection; Model Benchmark; Deep Learning for Visual Perception; Robotic Perception;
D O I
10.1007/978-3-031-43360-3_26
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
Autonomous robots require well-trained Anomaly Detection systems to detect unexpected hazardous events in unknown deployment scenarios. Such systems are difficult to train when data is scarce. During deployment, lots of data are collected but it is not apparent how to efficiently and effectively use that data. We propose to use Active Learning to select samples to improve the detection system performance. We benchmark 8 different query strategies, of which 2 are novel, using normalizing flow over image embeddings. While our results show that our approach has the best performance overall, choosing the right query strategy strongly depends on external factors.
引用
收藏
页码:315 / 327
页数:13
相关论文
共 41 条
[1]   Noise Flow: Noise Modeling with Conditional Normalizing Flows [J].
Abdelhamed, Abdelrahman ;
Brubaker, Marcus A. ;
Brown, Michael S. .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :3165-3173
[2]  
Angluin D., 1988, Machine Learning, V2, P319, DOI 10.1023/A:1022821128753
[3]   Active Learning for One-Class Classification [J].
Barnabe-Lortie, Vincent ;
Bellinger, Colin ;
Japkowicz, Nathalie .
2015 IEEE 14TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA), 2015, :390-395
[4]   The power of ensembles for active learning in image classification [J].
Beluch, William H. ;
Genewein, Tim ;
Nuernberger, Andreas ;
Koehler, Jan M. .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :9368-9377
[5]  
Birnbaum Z, 2015, INT CONF UNMAN AIRCR, P1310, DOI 10.1109/ICUAS.2015.7152425
[6]   The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation [J].
Blum, Hermann ;
Sarlin, Paul-Edouard ;
Nieto, Juan ;
Siegwart, Roland ;
Cadena, Cesar .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2021, 129 (11) :3119-3135
[7]   A survey on active learning and human-in-the-loop deep learning for medical image analysis [J].
Budd, Samuel ;
Robinson, Emma C. ;
Kainz, Bernhard .
MEDICAL IMAGE ANALYSIS, 2021, 71
[8]  
Chakravarty P., 2007, P AUSTRALIASIAN C RO, P1
[9]   Anomaly Detection: A Survey [J].
Chandola, Varun ;
Banerjee, Arindam ;
Kumar, Vipin .
ACM COMPUTING SURVEYS, 2009, 41 (03)
[10]  
Cho K, 2014, P 2014 C EMP METH NA, P1724