Advances in heavy alkaline earth chemistry provide insight into complexation of weakly polarizing Ra2+, Ba2+, and Sr2+ cations

被引:5
作者
Gilhula, J. Connor [1 ]
Xu, Lei [1 ]
White, Frankie D. [1 ]
Adelman, Sara L. [1 ]
Aldrich, Kelly E. [1 ]
Batista, Enrique R. [1 ]
Dan, David [1 ]
Jones, Zachary R. [1 ]
Kozimor, Stosh A. [1 ]
Mason, Harris E. [1 ]
Meyer, Rachel L. [1 ,2 ]
Thiele, Nikki A. [3 ]
Yang, Ping [1 ]
Yuan, Mingbin [1 ]
机构
[1] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
[2] Univ Rochester, Dept Chem Engn, Rochester, NY 14627 USA
[3] Oak Ridge Natl Lab, Chem Sci Div, Oak Ridge, TN 37831 USA
关键词
METAL-COMPLEXES; CATALYSTS; ISOTOPES; ELEMENTS; EXCHANGE; ETHERS; ENERGY; RADIUM; AMINES; IMPACT;
D O I
10.1126/sciadv.adj8765
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Numerous technologies-with catalytic, therapeutic, and diagnostic applications-would benefit from improved chelation strategies for heavy alkaline earth elements: Ra2+, Ba2+, and Sr2+. Unfortunately, chelating these metals is challenging because of their large size and weak polarizing power. We found 18-crown-6-tetracarboxylic acid (H4COCO) bound Ra2+, Ba2+, and Sr2+ to form M(HxCOCO)(x-2). Upon isolating radioactive Ra-223 from its parent radionuclides (Ac-227 and Th-227), Ra-223(2+) reacted with the fully deprotonated COCO4- chelator to generate Ra(COCO)(2-)((aq)) (log KRa(COCO)2- = 5.97 +/- 0.01), a rare example of a molecular radium complex. Comparative analyses with Sr2+ and Ba2+ congeners informed on what attributes engendered success in heavy alkaline earth complexation. Chelators with high negative charge [-4 for Ra(COCO)(2-)((aq))] and many donor atoms [>= 11 in Ra(COCO)(2-)((aq))] provided a framework for stable complex formation. These conditions achieved steric saturation and overcame the weak polarization powers associated with these large dicationic metals.
引用
收藏
页数:14
相关论文
共 76 条
[1]  
Abou D, 2020, J NUCL MED, V61
[2]   Towards the stable chelation of radium for biomedical applications with an 18-membered macrocyclic ligand [J].
Abou, Diane S. ;
Thiele, Nikki A. ;
Gutsche, Nicholas T. ;
Villmer, Alexandria ;
Zhang, Hanwen ;
Woods, Joshua J. ;
Baidoo, Kwamena E. ;
Escorcia, Freddy E. ;
Wilson, Justin J. ;
Thorek, Daniel L. J. .
CHEMICAL SCIENCE, 2021, 12 (10) :3733-3742
[3]   MEAN-SQUARE CHARGE RADII OF RADIUM ISOTOPES AND OCTUPOLE DEFORMATION IN THE RA-220-228 REGION [J].
AHMAD, SA ;
KLEMPT, W ;
NEUGART, R ;
OTTEN, EW ;
REINHARD, PG ;
ULM, G ;
WENDT, K .
NUCLEAR PHYSICS A, 1988, 483 (02) :244-268
[4]   Preparation of an Actinium-228 Generator [J].
Aldrich, Kelly E. ;
Lam, Mila Nhu ;
Eiroa-Lledo, Cecilia ;
Kozimor, Stosh A. ;
Lilley, Laura M. ;
Mocko, Veronika ;
Stein, Benjamin W. .
INORGANIC CHEMISTRY, 2020, 59 (05) :3200-3206
[5]   Production of Ac-225 from Th-229 for targeted α therapy [J].
Apostolidis, C ;
Molinet, R ;
Rasmussen, G ;
Morgenstern, A .
ANALYTICAL CHEMISTRY, 2005, 77 (19) :6288-6291
[6]   Treatment of solid tumors by interstitial release of recoiling short-lived alpha emitters [J].
Arazi, L. ;
Cooks, T. ;
Schmidt, M. ;
Keisari, Y. ;
Kelson, I. .
PHYSICS IN MEDICINE AND BIOLOGY, 2007, 52 (16) :5025-5042
[7]   Exploring how exposure to radiolysis and harsh chemical reagents impact americium-241 extraction chromatography [J].
Arko, Brian T. ;
Dan, David ;
Adelman, Sara ;
Kimball, David B. ;
Kozimor, Stosh A. ;
Martinez, Marki M. ;
Mastren, Tara ;
Huber, Daniel L. ;
Mocko, Veronika ;
Rim, Jung ;
Shafer, Jenifer C. ;
Stein, Benjamin W. ;
Wylie, E. Miller .
MATERIALS ADVANCES, 2023, 4 (01) :265-283
[8]  
Arrowsmith M., 2013, Comprehensive Inorganic Chemistry, VII, P1189
[9]   Alkaline earth catalysis for the 100% atom-efficient three component assembly of imidazolidin-2-ones [J].
Arrowsmith, Merle ;
Shepherd, William M. S. ;
Hill, Michael S. ;
Kociok-Koehn, Gabriele .
CHEMICAL COMMUNICATIONS, 2014, 50 (84) :12676-12679
[10]   Radiation-induced decomposition of anion exchange resins [J].
Baidak, Aliaksandr ;
LaVerne, Jay A. .
JOURNAL OF NUCLEAR MATERIALS, 2010, 407 (03) :211-219