The Donsker delta function and local time for McKean-Vlasov processes and applications

被引:3
作者
Agram, Nacira [1 ]
Oksendal, Bernt [2 ]
机构
[1] KTH Royal Inst Technol, Dept Math, Stockholm, Sweden
[2] Univ Oslo, Dept Math, Oslo, Norway
基金
瑞典研究理事会;
关键词
Donsker delta function; local time; McKean-Vlasov process; Fokker-Planck equation; SDES;
D O I
10.1080/17442508.2023.2286252
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of this paper is to establish a stochastic differential equation for the Donsker delta measure of the solution of a McKean-Vlasov (mean-field) stochastic differential equation.If the Donsker delta measure is absolutely continuous with respect to Lebesgue measure, then its Radon-Nikodym derivative is called the Donsker delta function. In that case it can be proved that the local time of such a process is simply the integral with respect to time of the Donsker delta function. Therefore we also get an equation for the local time of such a process.For some particular McKean-Vlasov processes, we find explicit expressions for their Donsker delta functions and hence for their local times.
引用
收藏
页数:18
相关论文
共 10 条
[1]   Using the Donsker Delta Function to compute hedging strategies [J].
Aase, K ;
Oksendal, B ;
Uboe, J .
POTENTIAL ANALYSIS, 2001, 14 (04) :351-374
[2]  
Agram N, 2022, Arxiv, DOI arXiv:2110.02193
[3]   A financial market with singular drift and no arbitrage [J].
Agram, Nacira ;
Oksendal, Bernt .
MATHEMATICS AND FINANCIAL ECONOMICS, 2021, 15 (03) :477-500
[4]  
Baaz M, 2003, Arxiv, DOI arXiv:math/0303011
[5]  
Breiman B.L., 1968, Probability
[6]  
Di Nunno G, 2009, UNIVERSITEXT, P1
[7]  
Folland G.B., 1984, REAL ANAL MODERN TEC
[8]   On explicit strong solution of Ito-Sde's and the donsker delta function of a diffusion [J].
Lanconelli, A ;
Proske, F .
INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2004, 7 (03) :437-447
[9]  
Meyer-Brandis T, 2006, COMMUN MATH SCI, V4, P129
[10]  
Oksendal B., 2017, Let Us Use White Noise, P191