THE PROFILE POLYTOPE OF NONTRIVIAL INTERSECTING FAMILIES

被引:0
作者
Gerbner, Daniel [1 ]
机构
[1] Alfred Reny Inst Math, H-1053 Budapest, Hungary
关键词
profile polytope; intersecting; nontrivial intersecting; THEOREMS; SYSTEMS;
D O I
10.1137/22M1508984
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The profile vector of a family \scrF of subsets of an n -element set is (f0, f1, . . . , fn), where fi denotes the number of the i-element members of \scrF. In this paper we determine the extreme points of the set of profile vectors for the class of nontrivial intersecting families.
引用
收藏
页码:2265 / 2275
页数:11
相关论文
共 13 条
[1]  
Engel K., 1997, SPERNER THEORY, V65
[2]   INTERSECTION THEOREMS FOR SYSTEMS OF FINITE SETS [J].
ERDOS, P ;
RADO, R ;
KO, C .
QUARTERLY JOURNAL OF MATHEMATICS, 1961, 12 (48) :313-&
[3]   INTERSECTING SPERNER FAMILIES AND THEIR CONVEX HULLS [J].
ERDOS, PL ;
FRANKL, P ;
KATONA, GOH .
COMBINATORICA, 1984, 4 (01) :21-34
[4]   EXTREMAL HYPERGRAPH PROBLEMS AND CONVEX HULLS [J].
ERDOS, PL ;
FRANKL, P ;
KATONA, GOH .
COMBINATORICA, 1985, 5 (01) :11-26
[5]  
Gerbner D., 2018, EXTREMAL FINITE SET
[6]   l-chain profile vectors [J].
Gerbner, Daniel ;
Patkos, Balazs .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2008, 22 (01) :185-193
[7]   Generalized Forbidden Subposet Problems [J].
Gerbner, Daniel ;
Keszegh, Balazs ;
Patkos, Balazs .
ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2020, 37 (02) :389-410
[8]   Profile polytopes of some classes of families [J].
Gerbner, Daniel .
COMBINATORICA, 2013, 33 (02) :199-216
[9]   Profile vectors in the lattice of subspaces [J].
Gerbner, Daniel ;
Patkos, Balazs .
DISCRETE MATHEMATICS, 2009, 309 (09) :2861-2869
[10]   SOME INTERSECTION THEOREMS FOR SYSTEMS OF FINITE SETS [J].
HILTON, AJW ;
MILNER, EC .
QUARTERLY JOURNAL OF MATHEMATICS, 1967, 18 (72) :369-&