Numerical simulation of electroosmotic mixing of non-Newtonian fluids in a micromixer with zeta potential heterogeneity

被引:9
作者
Yang, Jiajie [1 ]
Chen, Yi [1 ]
Du, Changlong [1 ]
Guan, Xintao [1 ]
Li, Jie [1 ,2 ]
机构
[1] Wuhan Univ Technol, Sch Naval Architecture Ocean & Energy Power Engn, Wuhan 430063, Peoples R China
[2] 1178 Heping Ave, Wuhan 430063, Peoples R China
关键词
Viscoelastic fluid; Mixing efficiency; Electroosmosis; Surface potential heterogeneity; Debye parameter; Weissenberg number; POWER-LAW FLUID; SURFACE-CHARGE; FLOW;
D O I
10.1016/j.cep.2023.109339
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Reagent mixing for microchemical analysis is critical. Most biological fluids and polymer solutions used in the biomedical field belong to the category of non-Newtonian fluids. In this study, the mixing of polyacrylamide (PAA) solutions driven by an electric field in a micromixer is numerically investigated. The micromixer is equipped with wall-mounted obstacles and surface potential heterogeneity. The simulation is performed by solving the Laplace equation, Poisson-Boltzmann equation, Navier-Stokes equations, Oldroyd-B constitutive equation, and species transport equation. The mixing efficiency increases from 63.9% to 97.6% when the obstacle surface zeta potential is increased from 20mV to 80mV. However, when the obstacle surface zeta po-tential is increased from 80mV to 120mV, the mixing efficiency decreases. When the EDLs overlap in the channel (kappa = 0.5), the heterogeneous potential has little effect on the mixing efficiency, and the mixing efficiency can be close to 99%. When Wi increases from 0 to 0.3320, the mixing efficiency changes from stable to unstable, and the average mixing efficiency increases.
引用
收藏
页数:15
相关论文
共 41 条
[31]   Electroosmotic flow of a power-law fluid in a non-uniform microchannel [J].
Ng, Chiu-On ;
Qi, Cheng .
JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2014, 208 :118-125
[32]   ON THE FORMULATION OF RHEOLOGICAL EQUATIONS OF STATE [J].
OLDROYD, JG .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1950, 200 (1063) :523-541
[33]  
Pimenta M.A.A. F., RHEOTOOL
[34]   Electrokinetic transport in silica nanochannels with asymmetric surface charge [J].
Prakash, Shaurya ;
Zambrano, Harvey A. ;
Fuest, Marie ;
Boone, Caitlin ;
Rosenthal-Kim, Emily ;
Vasquez, Nicolas ;
Conlisk, A. T. .
MICROFLUIDICS AND NANOFLUIDICS, 2015, 19 (06) :1455-1464
[35]   Magneto-hydrodynamics based microfluidics [J].
Qian, Shizhi ;
Bau, Haim H. .
MECHANICS RESEARCH COMMUNICATIONS, 2009, 36 (01) :10-21
[36]   A review on the application, simulation, and experiment of the electrokinetic mixers [J].
Rashidi, Saman ;
Bafekr, Haniyeh ;
Valipour, Mohammad Sadegh ;
Esfahani, Javad Abolfazli .
CHEMICAL ENGINEERING AND PROCESSING-PROCESS INTENSIFICATION, 2018, 126 :108-122
[37]   Numerical analysis of mixing enhancement for micro-electroosmotic flow [J].
Tang, G. H. ;
He, Y. L. ;
Tao, W. Q. .
JOURNAL OF APPLIED PHYSICS, 2010, 107 (10)
[38]   Electroosmotic flow of non-Newtonian fluid in microchannels [J].
Tang, G. H. ;
Li, X. F. ;
He, Y. L. ;
Tao, W. Q. .
JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2009, 157 (1-2) :133-137
[39]   Numerical and experimental investigation of an efficient convergent-divergent micromixer [J].
Usefian, Azam ;
Bayareh, Morteza .
MECCANICA, 2020, 55 (05) :1025-1035
[40]   Numerical and experimental study on mixing performance of a novel electro-osmotic micro-mixer [J].
Usefian, Azam ;
Bayareh, Morteza .
MECCANICA, 2019, 54 (08) :1149-1162