The Uniform Convergence of Fourier Series in a System of Polynomials Orthogonal in the Sense of Sobolev and Associated to Jacobi Polynomials

被引:1
作者
Magomed-Kasumov, M. G. [1 ,2 ]
机构
[1] Daghestan Fed Res Ctr, Makhachkala, Russia
[2] Vladikavkaz Sci Ctr, Vladikavkaz, Russia
关键词
Sobolev inner product; Jacobi polynomials; Fourier series; uniform convergence; Sobolev space; Muckenhoupt conditions; ASYMPTOTICS;
D O I
10.1134/S0037446623020088
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish that the Fourier series in the Sobolev system of polynomials P-alpha,P-beta (r), with -1 < alpha, beta = 0, associated to the Jacobi polynomials converge uniformly on [-1, 1] to functions in the Sobolev space W-r (L1 rho(alpha,beta)), where.(alpha,beta) is the Jacobi weight. We show also that the Fourier series converges in the norm of the Sobolev space W-r (rho)(L rho) with p > 1 under the Muckenhoupt conditions.
引用
收藏
页码:338 / 346
页数:9
相关论文
共 22 条
[1]   Fourier series for coherent pairs of Jacobi measures [J].
Ciaurri, Oscar ;
Minguez Ceniceros, Judit .
INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2021, 32 (5-8) :437-457
[2]   Fourier series of Jacobi-Sobolev polynomials [J].
Ciaurri, Oscar ;
Minguez Ceniceros, Judit .
INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2019, 30 (04) :334-346
[3]   Fourier Series of Gegenbauer-Sobolev Polynomials [J].
Ciaurri, Oscar ;
Minguez, Judit .
SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2018, 14
[4]   Discrete-Continuous Jacobi-Sobolev Spaces and Fourier Series [J].
Diaz-Gonzalez, Abel ;
Marcellan, Francisco ;
Pijeira-Cabrera, Hector ;
Urbina, Wilfredo .
BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2021, 44 (02) :571-598
[5]   Jacobi-Sobolev orthogonal polynomials: Asymptotics and a Cohen type inequality [J].
Fejzullahu, B. Xh. ;
Marcellan, F. ;
Moreno-Balcazar, J. J. .
JOURNAL OF APPROXIMATION THEORY, 2013, 170 :78-93
[6]   Asymptotic properties and Fourier expansions of orthogonal polynomials with a non-discrete Gegenbauer-Sobolev inner product [J].
Fejzullahu, Bujar Xh .
JOURNAL OF APPROXIMATION THEORY, 2010, 162 (02) :397-406
[7]  
Fejzullahu BXh, 2009, COMMUN ANALYTIC THEO, V16, P1
[8]  
Fikhtengolts G. M., 2003, COURSE DIFFERENTIAL
[9]   SOBOLEV-ORTHONORMAL SYSTEM OF FUNCTIONS GENERATED BY THE SYSTEM OF LAGUERRE FUNCTIONS [J].
Gadzhimirzaev, R. M. .
PROBLEMY ANALIZA-ISSUES OF ANALYSIS, 2019, 8 (01) :32-46
[10]   ON POLYNOMIALS ORTHOGONAL WITH RESPECT TO CERTAIN SOBOLEV INNER PRODUCTS [J].
ISERLES, A ;
KOCH, PE ;
NORSETT, SP ;
SANZSERNA, JM .
JOURNAL OF APPROXIMATION THEORY, 1991, 65 (02) :151-175