A novel two-step route to unidirectional growth of multilayer MoS2 nanoribbons

被引:16
作者
Miakota, Denys I. [1 ]
Ghimire, Ganesh [1 ]
Ulaganathan, Rajesh Kumar [1 ]
Rodriguez, Moises E. [2 ]
Canulescu, Stela [1 ]
机构
[1] Tech Univ Denmark, Dept Elect & Photon Engn, Frederiksborgvej 399, DK-4000 Roskilde, Denmark
[2] Tech Univ Denmark, Dept Energy Convers & Storage, DK-2820 Lyngby, Denmark
关键词
2D materials; TMDs; MoS2; Chemical Vapor Deposition (CVD); Pulsed Laser Deposition (PLD); nanoribbons; PULSED-LASER DEPOSITION; CARBON NANOTUBES; MONOLAYER; PHOTORESPONSE; SULFURIZATION; NANOSHEETS; SAPPHIRE; GRAPHENE; STRAIN; WSE2;
D O I
10.1016/j.apsusc.2023.156748
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Alkali-assisted chemical vapour deposition (CVD) of transition metal dichalcogenides (TMDs) has been shown to promote the growth of large single crystals of TMD monolayers. The morphology control of TMDs is a key parameter for the scalable synthesis of versatile layered materials. This work demonstrates that the alkali-assisted synthesis provides a route toward fabricating highly crystalline MoS2 nanoribbons. Our proposed method in-volves a vapour-liquid-solid phase reaction between MoOx (2 < x < 3) precursors grown by Pulsed Laser Deposition (PLD) and metal alkali halide (i.e., NaF). The growth process evolves via the emergence of the Na-Mo-O liquid phase, which mediates the formation of MoS2 multilayer nanoribbons in a sulfur-rich envi-ronment. Moreover, the as-grown MoS2 nanoribbons are surrounded by mono-and multilayer triangles of MoS2 and exhibit a preferential alignment defined by both MoS2 crystal symmetry and the underlying Al2O3 substrate. In addition, we observe a significant built-in strain in the as-grown MoS2 nanostructures, which increase in magnitude from the multilayer nanoribbons to the triangular monolayers, and which can be effectively released upon transfer onto another substrate. The growth method developed here can enable flexibility in designing nanoelectronic devices based on TMDs with tunable dimensions.
引用
收藏
页数:8
相关论文
共 61 条
[1]   Strain-engineered growth of two-dimensional materials [J].
Ahn, Geun Ho ;
Amani, Matin ;
Rasool, Haider ;
Lien, Der-Hsien ;
Mastandrea, James P. ;
Ager, Joel W., III ;
Dubey, Madan ;
Chrzan, Daryl C. ;
Minor, Andrew M. ;
Javey, Ali .
NATURE COMMUNICATIONS, 2017, 8
[2]  
Bae G., 2018, 3 NM GAA TECHNOLOGY, DOI [10.1109/IEDM.2018.8614629, DOI 10.1109/IEDM.2018.8614629]
[3]   Intrinsic Defects in MoS2 Grown by Pulsed Laser Deposition: From Monolayers to Bilayers [J].
Bertoldo, Fabian ;
Unocic, Raymond R. ;
Lin, Yu-Chuan ;
Sang, Xiahan ;
Puretzky, Alexander A. ;
Yu, Yiling ;
Miakota, Denys ;
Rouleau, Christopher M. ;
Schou, Jorgen ;
Thygesen, Kristian S. ;
Geohegan, David B. ;
Canulescu, Stela .
ACS NANO, 2021, 15 (02) :2858-2868
[4]   Metallic and ferromagnetic edges in molybdenum disulfide nanoribbons [J].
Botello-Mendez, A. R. ;
Lopez-Urias, F. ;
Terrones, M. ;
Terrones, H. .
NANOTECHNOLOGY, 2009, 20 (32)
[5]   Local Strain Engineering in Atomically Thin MoS2 [J].
Castellanos-Gomez, Andres ;
Roldan, Rafael ;
Cappelluti, Emmanuele ;
Buscema, Michele ;
Guinea, Francisco ;
van der Zant, Herre S. J. ;
Steele, Gary A. .
NANO LETTERS, 2013, 13 (11) :5361-5366
[6]   Large area CVD growth of graphene [J].
Chen, Xiangping ;
Zhang, Lili ;
Chen, Shanshan .
SYNTHETIC METALS, 2015, 210 :95-108
[7]   Graphene Nanoribbons: On-Surface Synthesis and Integration into Electronic Devices [J].
Chen, Zongping ;
Narita, Akimitsu ;
Muellen, Klaus .
ADVANCED MATERIALS, 2020, 32 (45)
[8]  
Chowdhury T., NAT NANOTECHNOL, V15
[9]   Synthesis and Optical Properties of Large-Area Single-Crystalline 2D Semiconductor WS2 Monolayer from Chemical Vapor Deposition [J].
Cong, Chunxiao ;
Shang, Jingzhi ;
Wu, Xing ;
Cao, Bingchen ;
Peimyoo, Namphung ;
Qiu, Caiyu ;
Sun, Litao ;
Yu, Ting .
ADVANCED OPTICAL MATERIALS, 2014, 2 (02) :131-136
[10]   Bandgap Engineering of Strained Monolayer and Bilayer MoS2 [J].
Conley, Hiram J. ;
Wang, Bin ;
Ziegler, Jed I. ;
Haglund, Richard F., Jr. ;
Pantelides, Sokrates T. ;
Bolotin, Kirill I. .
NANO LETTERS, 2013, 13 (08) :3626-3630