Electrochemical Nucleation and Growth of Copper-Tin Alloys from Ammonia-Free Citrate-Based Electrolyte

被引:1
作者
Hamla, Meriem [1 ,2 ]
Derbal, Sabrine [2 ]
Dilmi, Oualid [2 ]
Allam, Mahdi [2 ]
Benaicha, Mohamed [2 ]
机构
[1] Univ Mohamed El Bachir El Ibrahimi Bordj Bou Arrer, Fac Sci & Technol, Dept Mat Sci, El Anceur 34030, Algeria
[2] Ferhat Abbas Setif1 Univ, Fac Technol, Energet & Solid State Electrochem Lab ESEL, Dept Proc Engn, Setif 19000, Algeria
关键词
Copper-tin alloy; Thin films; Electrodeposition; Nucleation; Complexing agent; CU-SN COATINGS; ACID ELECTROLYTE; ELECTRODEPOSITION; COBALT;
D O I
10.1007/s13369-022-07592-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The cyclic voltammetry and chronoamperometry methods are used in the present work for the purpose of investigating the electrodeposition mechanism of Cu-Sn alloys onto Pt and Mo substrates from a slightly acidic aqueous electrolyte (pH asymptotic to 4.2) containing CuCl2 and SnCl2 as metal sources, and tri-sodium citrate as a complexing agent. The structural properties of the deposits were characterized by means of the X-ray diffraction (XRD) technique, whereas the surface morphology and composition were examined using the field-emission scanning electron microscopy (FESEM) and energy-dispersive spectroscopy (EDS). The resulting crystalline films were mainly composed of Cu, Sn, and intermetallic Cu6Sn5 phases with spherical grains, at the early stages of nucleation, and a mixture of spherical grains and dendrites with hierarchical secondary branches after long electrolysis duration. The analysis of potentiostatic current transients, using the Scharifker-Hills model, showed that the electroplating of Cu-Sn alloy followed the instantaneous nucleation mode on platinum substrate and the progressive nucleation mode on the molybdenum substrate.
引用
收藏
页码:7543 / 7551
页数:9
相关论文
共 36 条
  • [1] Abed Iman Jabber, 2020, AIP Conference Proceedings, V2292, DOI 10.1063/5.0031203
  • [2] Báez-Pimiento S, 2018, MATERIA-BRAZIL, V23, DOI [10.1590/s1517-707620180002.0340, 10.1590/S1517-707620180002.0340]
  • [3] Preparation and characterization of CuSn, CuZr, SnZr and CuSnZr thin films deposited by SILAR method
    Balaji, M.
    Devi, S. Chithra
    Balasubramanian, A. K.
    Kumar, N. R. Senthil
    [J]. VACUUM, 2019, 161 : 338 - 346
  • [4] Copper-tin electrodeposition from an acid solution containing EDTA added
    Barbano, E. P.
    de Oliveira, G. M.
    de Carvalho, M. F.
    Carlos, I. A.
    [J]. SURFACE & COATINGS TECHNOLOGY, 2014, 240 : 14 - 22
  • [5] Bard A.J., 1980, ELECTROCHEMICAL METH
  • [6] Electrodeposition of Cu-Sn alloys from a methanesulfonic acid electrolyte containing benzyl alcohol
    Bengoa, L. N.
    Pary, P.
    Conconi, M. S.
    Egli, W. A.
    [J]. ELECTROCHIMICA ACTA, 2017, 256 : 211 - 219
  • [7] Brenner A., 2013, Electrodeposition of alloys: principles and practice
  • [8] Studies of niobium electrocrystallization phenomena in molten fluorides
    Chamelot, P
    Lafage, B
    Taxil, P
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1996, 143 (05) : 1570 - 1576
  • [9] Cu-Sn coatings obtained from pyrophosphate-based electrolytes
    Correia, Adriana Nunes
    Facanha, Marcello Xavier
    de Lima-Neto, Pedro
    [J]. SURFACE & COATINGS TECHNOLOGY, 2007, 201 (16-17) : 7216 - 7221
  • [10] da Silva PS, 2017, MATER RES-IBERO-AM J, V20, P667, DOI [10.1590/1980-5373-mr-2016-0962, 10.1590/1980-5373-MR-2016-0962]