Diagnostic accuracy of radiomics-based machine learning for neoadjuvant chemotherapy response and survival prediction in gastric cancer patients: A systematic review and meta-analysis

被引:6
作者
Adili, Diliyaer [1 ]
Mohetaer, Aibibai [2 ]
Zhang, Wenbin [1 ,3 ]
机构
[1] Xinjiang Med Univ, Affiliated Hosp 1, Dept Gastrointestinal Oncol Surg, Urumqi 830054, Peoples R China
[2] Xinjiang Med Univ, Affiliated Hosp 2, Dept Cardiol, Urumqi 830063, Peoples R China
[3] Xinjiang Med Univ, 393 Xin Yi Rd, Urumqi, Xinjiang, Peoples R China
关键词
Gastric cancer; Radiomics; Neoadjuvant chemotherapy; Systematic review; GASTROESOPHAGEAL JUNCTION ADENOCARCINOMA; OPEN-LABEL; OXALIPLATIN; CAPECITABINE; MULTICENTER; OUTCOMES; THERAPY; MODEL; S-1;
D O I
10.1016/j.ejrad.2023.111249
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Background: In recent years, researchers have explored the use of radiomics to predict neoadjuvant chemotherapy outcomes in gastric cancer (GC). Yet, a lingering debate persists regarding the accuracy of these predictions. Against this backdrop, this study was conducted to examine the accuracy of radiomics in predicting the response to neoadjuvant chemotherapy in GC patients. Methods: An exhaustive search of relevant studies was conducted in PubMed, Cochrane, Embase, and Web of Science databases up to February 21, 2023. The radiomics quality scoring (RQS) tool was employed to assess study quality. Tumor response to neoadjuvant chemotherapy and survival outcomes were examined as outcome measures. Results: Fourteen studies involving 3,373 GC patients who had received neoadjuvant chemotherapy were incorporated in our meta-analysis. The mean RQS score across all studies was 36.3%, ranging between 0 and 63.9%. On the validation cohort, when the modeling variables were restricted to radiomic features alone, the predictive performance was characterized by a c-index of 0.750 (95% CI: 0.710-0.790), with a sensitivity of 0.67 (95% CI: 0.58-0.75) and a specificity of 0.77 (95% CI: 0.69-0.84) for the prediction of neoadjuvant chemotherapy response. When clinical data was integrated with radiomic features as modeling variables, the predictive performance improved, yielding a c-index of 0.814 (95% CI: 0.780-0.847), a sensitivity of 0.78 [95% CI: 0.70-0.84], and a specificity of 0.73 [95% CI: 0.67-0.79]. Conclusions: Radiomics holds promise to noninvasively predict neoadjuvant chemotherapy response and survival outcomes among patients with locally advanced GC. Additionally, we underscore the need for future multicenter studies and the development of imaging-sourced tools for risk stratification in this patient population.
引用
收藏
页数:9
相关论文
共 47 条
[1]   Gastric Cancer, Version 2.2022 [J].
Ajani, Jaffer A. ;
D'Amico, Thomas A. ;
Bentrem, David J. ;
Chao, Joseph ;
Cooke, David ;
Corvera, Carlos ;
Das, Prajnan ;
Enzinger, Peter C. ;
Enzler, Thomas ;
Fanta, Paul ;
Farjah, Farhood ;
Gerdes, Hans ;
Gibson, Michael K. ;
Hochwald, Steven ;
Hofstetter, Wayne L. ;
Ilson, David H. ;
Keswani, Rajesh N. ;
Kim, Sunnie ;
Kleinberg, Lawrence R. ;
Klempner, Samuel J. ;
Lacy, Jill ;
Ly, Quan P. ;
Matkowskyj, Kristina A. ;
McNamara, Michael ;
Mulcahy, Mary F. ;
Outlaw, Darryl ;
Park, Haeseong ;
Perry, Kyle A. ;
Pimiento, Jose ;
Poultsides, George A. ;
Reznik, Scott ;
Roses, Robert E. ;
Strong, Vivian E. ;
Su, Stacey ;
Wang, Hanlin L. ;
Wiesner, Georgia ;
Willett, Christopher G. ;
Yakoub, Danny ;
Yoon, Harry ;
McMillian, Nicole ;
Pluchino, Lenora A. .
JOURNAL OF THE NATIONAL COMPREHENSIVE CANCER NETWORK, 2022, 20 (02) :167-192
[2]   Perioperative chemotherapy with fluorouracil plus leucovorin, oxaliplatin, and docetaxel versus fluorouracil or capecitabine plus cisplatin and epirubicin for locally advanced, resectable gastric or gastro-oesophageal junction adenocarcinoma (FLOT4): a randomised, phase 2/3 trial [J].
Al-Batran, Salah-Eddin ;
Homann, Nils ;
Pauligk, Claudia ;
Goetze, Thorsten O. ;
Meiler, Johannes ;
Kasper, Stefan ;
Kopp, Hans-Georg ;
Mayer, Frank ;
Haag, Georg Martin ;
Luley, Kim ;
Lindig, Udo ;
Schmiegel, Wolff ;
Pohl, Michael ;
Stoehlmacher, Jan ;
Folprecht, Gunnar ;
Probst, Stephan ;
Prasnikar, Nicole ;
Fischbach, Wolfgang ;
Mahlberg, Rolf ;
Trojan, Joerg ;
Koenigsmann, Michael ;
Martens, Uwe M. ;
Thuss-Patience, Peter ;
Egger, Matthias ;
Block, Andreas ;
Heinemann, Volker ;
Illerhaus, Gerald ;
Moehler, Markus ;
Schenk, Michael ;
Kullmann, Frank ;
Behringer, Dirk M. ;
Heike, Michael ;
Pink, Daniel ;
Teschendorf, Christian ;
Loehr, Carmen ;
Bernhard, Helga ;
Schuch, Gunter ;
Rethwisch, Volker ;
von Weikersthal, Ludwig Fischer ;
Hartmann, Joerg T. ;
Kneba, Michael ;
Daum, Severin ;
Schulmann, Karsten ;
Weniger, Joerg ;
Belle, Sebastian ;
Gaiser, Timo ;
Oduncu, Fuat S. ;
Guentner, Martina ;
Hozaeel, Wael ;
Reichart, Alexander .
LANCET, 2019, 393 (10184) :1948-1957
[3]   Histopathological regression after neoadjuvant docetaxel, oxaliplatin, fluorouracil, and leucovorin versus epirubicin, cisplatin, and fluorouracil or capecitabine in patients with resectable gastric or gastro-oesophageal junction adenocarcinoma (FLOT4-AIO): results from the phase 2 part of a multicentre, open-label, randomised phase 2/3 trial [J].
Al-Batran, Salah-Eddin ;
Hofheinz, Ralf D. ;
Pauligk, Claudia ;
Kopp, Hans-Georg ;
Haag, Georg Martin ;
Luley, Kim Barbara ;
Meiler, Johannes ;
Homann, Nils ;
Lorenzen, Sylvie ;
Schmalenberg, Harald ;
Probst, Stephan ;
Koenigsmann, Michael ;
Egger, Matthias ;
Prasnikar, Nicole ;
Caca, Karel ;
Trojan, Joerg ;
Martens, Uwe M. ;
Block, Andreas ;
Fischbach, Wolfgang ;
Mahlberg, Rolf ;
Clemens, Michael ;
Illerhaus, Gerald ;
Zirlik, Katja ;
Behringer, Dirk M. ;
Schmiegel, Wolff ;
Pohl, Michael ;
Heike, Michael ;
Ronellenfitsch, Ulrich ;
Schuler, Martin ;
Bechstein, Wolf O. ;
Koenigsrainer, Alfred ;
Gaiser, Timo ;
Schirmacher, Peter ;
Hozaeel, Wael ;
Reichart, Alexander ;
Goetze, Thorsten O. ;
Sievert, Mark ;
Jaeger, Elke ;
Moenig, Stefan ;
Tannapfel, Andrea .
LANCET ONCOLOGY, 2016, 17 (12) :1697-1708
[4]   Contribution of diffusion weighted MRI to diagnosis and staging in gastric tumors and comparison with multi-detector computed tomography [J].
Arslan, Harun ;
Ozbay, Mehmet Fatih ;
Calli, Iskan ;
Dogan, Erkan ;
Celik, Sebahattin ;
Batur, Abdussamet ;
Bora, Aydin ;
Yavuz, Alpaslan ;
Bulut, Mehmet Deniz ;
Ozgokce, Mesut ;
Kotan, Mehmet Cetin .
RADIOLOGY AND ONCOLOGY, 2017, 51 (01) :23-29
[5]   Treatment of localized gastric and gastroesophageal adenocarcinoma: the role of accurate staging and preoperative therapy [J].
Badgwell, Brian ;
Das, Prajnan ;
Ajani, Jaffer .
JOURNAL OF HEMATOLOGY & ONCOLOGY, 2017, 10
[6]   Multimodality Therapy of Localized Gastric Adenocarcinoma [J].
Badgwell, Brian .
JOURNAL OF THE NATIONAL COMPREHENSIVE CANCER NETWORK, 2016, 14 (10) :1321-1327
[7]   Radiomics in precision medicine for gastric cancer: opportunities and challenges [J].
Chen, Qiuying ;
Zhang, Lu ;
Liu, Shuyi ;
You, Jingjing ;
Chen, Luyan ;
Jin, Zhe ;
Zhang, Shuixing ;
Zhang, Bin .
EUROPEAN RADIOLOGY, 2022, 32 (09) :5852-5868
[8]   CT-Based Radiomics Showing Generalization to Predict Tumor Regression Grade for Advanced Gastric Cancer Treated With Neoadjuvant Chemotherapy [J].
Chen, Yong ;
Xu, Wei ;
Li, Yan-Ling ;
Liu, Wentao ;
Sah, Birendra Kumar ;
Wang, Lan ;
Xu, Zhihan ;
Wels, Michael ;
Zheng, Yanan ;
Yan, Min ;
Zhang, Huan ;
Ma, Qianchen ;
Zhu, Zhenggang ;
Li, Chen .
FRONTIERS IN ONCOLOGY, 2022, 12
[9]   Evaluation of dual-energy CT derived radiomics signatures in predicting outcomes in patients with advanced gastric cancer after neoadjuvant chemotherapy [J].
Chen, Yong ;
Yuan, Fei ;
Wang, Lingyun ;
Li, Elsie ;
Xu, Zhihan ;
Wels, Michael ;
Yao, Weiwu ;
Zhang, Huan .
EJSO, 2022, 48 (02) :339-347
[10]   A Machine Learning Model for Predicting a Major Response to Neoadjuvant Chemotherapy in Advanced Gastric Cancer [J].
Chen, Yonghe ;
Wei, Kaikai ;
Liu, Dan ;
Xiang, Jun ;
Wang, Gang ;
Meng, Xiaochun ;
Peng, Junsheng .
FRONTIERS IN ONCOLOGY, 2021, 11