Activation of persulfate by biochar-supported sulfidized nanoscale zero-valent iron for degradation of ciprofloxacin in aqueous solution: process optimization and degradation pathway

被引:1
|
作者
Xue, Wenjing [1 ]
Chen, Xinyu [1 ]
Liu, Hongdou [1 ]
Li, Jun [1 ]
Wen, Siqi [1 ]
Guo, Jiaming [1 ]
Shi, Xiaoyu [1 ]
Gao, Yang [2 ]
Wang, Rongzhong [3 ]
Xu, Yiqun [1 ]
机构
[1] Yangzhou Univ, Coll Environm Sci & Engn, Yangzhou 225009, Peoples R China
[2] Changsha Univ Sci & Technol, Sch Hydraul & Environm Engn, Changsha 410114, Peoples R China
[3] Univ South China, Sch Resource Environm & Safety Engn, Hengyang 421001, Peoples R China
基金
中国国家自然科学基金;
关键词
Biochar; Sulfidized nanoscale zero-valent iron; Ciprofloxacin; Persulfate; Degradation intermediates; TRANSFORMATION PATHWAYS; INSIGHTS; REMOVAL; NANOPARTICLES; OXIDATION; KINETICS; NZVI;
D O I
10.1007/s11356-024-31931-z
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The pollution of antibiotics, specifically ciprofloxacin (CIP), has emerged as a significant issue in the aquatic environment. Advanced oxidation processes (AOPs) are capable of achieving stable and efficient removal of antibiotics from wastewater. In this work, biochar-supported sulfidized nanoscale zero-valent iron (S-nZVI/BC) was adopted to activate persulfate (PS) for the degradation of CIP. The impacts of different influencing factors such as S/Fe molar ratios, BC/S-nZVI mass ratios, PS concentration, S-nZVI/BC dosage, CIP concentration, initial pH, coexisting anions, and humic acid on CIP degradation efficiency were explored by batch experiments. The results demonstrated that the highest degradation ability of S-nZVI/BC was achieved when the S/Fe molar ratio was 0.07 and the BC/S-nZVI mass ratio was 1:1. Under the experimental conditions with 0.6 g/L S-nZVI/BC, 2 mmol/L PS, and 10 mg/L CIP, the degradation rate reached 97.45% after 90 min. The S-nZVI/BC + PS system showed significant degradation in the pH range from 3 to 9. The coexisting anions affected the CIP degradation efficiency in the following order: CO32- > NO3- > SO42- > Cl-. The radical quenching experiments and electron paramagnetic resonance (EPR) revealed that oxidative species, including SO4 center dot-, HO center dot, O-center dot(2)-, and O-1(2), all contribute to the degradation of CIP, in which O-center dot(2)- plays a particularly prominent role. Furthermore, the probable degradation pathway of CIP was explored according to the 12 degradation intermediates identified by LC-MS. This study provides a new idea for the activation method of PS and presents a new approach for the treatment of aqueous antibiotics with highly catalytic active nanomaterials.
引用
收藏
页码:10950 / 10966
页数:17
相关论文
共 50 条
  • [21] Sodium carbonate/biochar-supported sodium alginate-modified nano zero-valent iron for complete adsorption and degradation of tetracycline in aqueous solution
    Wang, Xiangyu
    Wu, Lan
    Ma, Jun
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2024, 31 (03) : 3641 - 3655
  • [22] Degradation of aniline with zero-valent iron as an activator of persulfate in aqueous solution
    Hussain, Imtyaz
    Zhang, Yongqing
    Huang, Shaobin
    RSC ADVANCES, 2014, 4 (07) : 3502 - 3511
  • [23] Experimental and theoretical aspects of biochar-supported nanoscale zero-valent iron activating H2O2 for ciprofloxacin removal from aqueous solution
    Mao, Qiming
    Zhou, Yaoyu
    Yang, Yuan
    Zhang, Jiachao
    Liang, Lifen
    Wang, Hailong
    Luo, Shuang
    Luo, Lin
    Jeyakumar, Paramsothy
    Ok, Yong Sik
    Rizwan, Muhammad
    JOURNAL OF HAZARDOUS MATERIALS, 2019, 380
  • [24] Mechanistic insights into adsorptive and oxidative removal of monochlorobenzene in biochar-supported nanoscale zero-valent iron/persulfate system
    Yang, Lei
    Chen, Yun
    Ouyang, Da
    Yan, Jingchun
    Qian, Linbo
    Han, Lu
    Chen, Mengfang
    Li, Jing
    Gu, Mingyue
    CHEMICAL ENGINEERING JOURNAL, 2020, 400
  • [25] Persulfate activation by sulfide -modified nanoscale iron supported by biochar (S-nZVI/BC) for degradation of ciprofloxacin
    Gao, Jie
    Han, Dongqiang
    Xu, Yun
    Liu, Yingying
    Shang, Jingge
    SEPARATION AND PURIFICATION TECHNOLOGY, 2020, 235
  • [26] Removal of atrazine by biochar-supported zero-valent iron catalyzed persulfate oxidation: Reactivity, radical production and transformation pathway
    Jiang, Zhao
    Li, Jiaojiao
    Jiang, Duo
    Gao, Yan
    Chen, Yukun
    Wang, Wei
    Cao, Bo
    Tao, Yue
    Wang, Lei
    Zhang, Ying
    ENVIRONMENTAL RESEARCH, 2020, 184
  • [27] Enhanced degradation of bisphenol S by persulfate activated with sulfide-modified nanoscale zero-valent iron
    Cai, Jing
    Zhang, Yan
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2022, 29 (06) : 8281 - 8293
  • [28] Simultaneous adsorption and reduction of hexavalent chromium on biochar-supported nanoscale zero-valent iron (nZVI) in aqueous solution
    Ma, Fengfeng
    Philippe, Bakunzibake
    Zhao, Baowei
    Diao, Jingru
    Li, Jian
    WATER SCIENCE AND TECHNOLOGY, 2020, 82 (07) : 1339 - 1349
  • [29] Effective degradation of tetracycline via persulfate activation using silica-supported zero-valent iron: process optimization, mechanism, degradation pathways and water matrices
    Salama, Eslam
    Mensah, Kenneth
    ElKady, Marwa
    Shokry, Hassan
    Samy, Mahmoud
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2023, 30 (37) : 87449 - 87464
  • [30] Removal of Se(IV)from water with biochar-supported nanoscale zero-valent iron: optimization of preparation conditions and adsorption characteristics
    Chen, Meijing
    Liu, Wenfeng
    Yi, Baojun
    Wu, Yunlian
    Kong, Xiangdong
    Zhang, Shiwei
    Sun, Zhengshuai
    DESALINATION AND WATER TREATMENT, 2022, 261 : 241 - 248