Tracing the Evolutionary Pathways of Serogroup O78 Avian Pathogenic Escherichia coli

被引:2
作者
Ha, Eun-Jin [1 ,2 ,3 ]
Hong, Seung-Min [1 ,2 ,3 ]
Kim, Seung-Ji [1 ,2 ,3 ]
Ahn, Sun-Min [3 ]
Kim, Ho-Won [3 ]
Choi, Kang-Seuk [1 ,2 ,3 ]
Kwon, Hyuk-Joon [2 ,3 ,4 ,5 ,6 ]
机构
[1] Seoul Natl Univ, Coll Vet Med, Dept Farm Anim Med, Lab Avian Dis, Seoul 088026, South Korea
[2] Seoul Natl Univ, BK21 PLUS Vet Sci, Seoul 088026, South Korea
[3] Coll Vet Med, Res Inst Vet Sci, Seoul 08826, South Korea
[4] Seoul Natl Univ, Coll Vet Med, Dept Farm Anim Med, Lab Poultry Med, Seoul 088026, South Korea
[5] Seoul Natl Univ, Farm Anim Clin Training & Res Ctr FACTRC, GBST, Pyeongchang 25354, South Korea
[6] GeNiner Inc, Seoul 08826, South Korea
来源
ANTIBIOTICS-BASEL | 2023年 / 12卷 / 12期
关键词
Escherichia evolution; avian pathogenic E. coli; rpoB sequence typing; network analysis; comparative genomics; CRISPR spacer; molecular prophage typing; virulence and antibiotic resistance genes; bacteriocin; ANTIMICROBIAL RESISTANCE; MOLECULAR-MECHANISMS; COMPARATIVE GENOMICS; GENES; SEQUENCE; STRAINS; IDENTIFICATION; PREVALENCE; INTEGRONS; SUSCEPTIBILITY;
D O I
10.3390/antibiotics12121714
中图分类号
R51 [传染病];
学科分类号
100401 ;
摘要
Avian pathogenic E. coli (APEC) causes severe economic losses in the poultry industry, and O78 serogroup APEC strains are prevalent in chickens. In this study, we aimed to understand the evolutionary pathways and relationships between O78 APEC and other E. coli strains. To trace these evolutionary pathways, we classified 3101 E. coli strains into 306 subgenotypes according to the numbers and types of single nucleotide polymorphisms (RST0 to RST63-1) relative to the consensus sequence (RST0) of the RNA polymerase beta subunit gene and performed network analysis. The E. coli strains showed four apparently different evolutionary pathways (I-1, I-2, I-3, and II). The thirty-two Korean O78 APEC strains tested in this study were classified into RST4-4 (45.2%), RST3-1 (32.3%), RST21-1 (12.9%), RST4-5 (3.2%), RST5-1 (3.2%), and RST12-6 (3.2%), and all RSTs except RST21-1 (I-2) may have evolved through the same evolutionary pathway (I-1). A comparative genomic study revealed the highest relatedness between O78 strains of the same RST in terms of genome sequence coverage/identity and the spacer sequences of CRISPRs. The early-appearing RST3-1 and RST4-4 prevalence among O78 APEC strains may reflect the early settlement of O78 E. coli in chickens, after which these bacteria accumulated virulence and antibiotic resistance genes to become APEC strains. The zoonotic risk of the conventional O78 APEC strains is low at present, but the appearance of genetically distinct and multiple virulence gene-bearing RST21-1 O78 APEC strains may alert us to a need to evaluate their virulence in chickens as well as their zoonotic risk.
引用
收藏
页数:23
相关论文
共 95 条
  • [1] Antimicrobial susceptibility and occurrence of resistance genes among Salmonella enterica serovar Weltevreden from different countries
    Aarestrup, FM
    Lertworapreecha, M
    Evans, MC
    Bangtrakulnonth, A
    Chalermchaikit, T
    Hendriksen, RS
    Wegener, HC
    [J]. JOURNAL OF ANTIMICROBIAL CHEMOTHERAPY, 2003, 52 (04) : 715 - 718
  • [2] Antimicrobial use surveillance in broiler chicken flocks in Canada, 2013-2015
    Agunos, Agnes
    Leger, David F.
    Carson, Carolee A.
    Gow, Sheryl P.
    Bosman, Angelina
    Irwin, Rebecca J.
    Reid-Smith, Richard J.
    [J]. PLOS ONE, 2017, 12 (06):
  • [3] BLAST Ring Image Generator (BRIG): simple prokaryote genome comparisons
    Alikhan, Nabil-Fareed
    Petty, Nicola K.
    Ben Zakour, Nouri L.
    Beatson, Scott A.
    [J]. BMC GENOMICS, 2011, 12
  • [4] Molecular Analysis of Antimicrobial Resistance Mechanisms in Neisseria gonorrhoeae Isolates from Ontario, Canada
    Allen, Vanessa G.
    Farrell, David J.
    Rebbapragada, Anuradha
    Tan, Jingyuan
    Tijet, Nathalie
    Perusini, Stephen J.
    Towns, Lynn
    Lo, Stephen
    Low, Donald E.
    Melano, Roberto G.
    [J]. ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2011, 55 (02) : 703 - 712
  • [5] Median-joining networks for inferring intraspecific phylogenies
    Bandelt, HJ
    Forster, P
    Röhl, A
    [J]. MOLECULAR BIOLOGY AND EVOLUTION, 1999, 16 (01) : 37 - 48
  • [6] Microcins in Enterobacteriaceae: Peptide Antimicrobials in the Eco-Active Intestinal Chemosphere
    Baquero, Fernando
    Lanza, Val F.
    Baquero, Maria-Rosario
    del Campo, Rosa
    Bravo-Vazquez, Daniel A.
    [J]. FRONTIERS IN MICROBIOLOGY, 2019, 10
  • [7] CRISPRTarget: Bioinformatic prediction and analysis of crRNA targets
    Biswas, Ambarish
    Gagnon, Joshua N.
    Brouns, Stan J. J.
    Fineran, Peter C.
    Brown, Chris M.
    [J]. RNA BIOLOGY, 2013, 10 (05) : 817 - 827
  • [8] Molecular mechanisms of antibiotic resistance
    Blair, Jessica M. A.
    Webber, Mark A.
    Baylay, Alison J.
    Ogbolu, David O.
    Piddock, Laura J. V.
    [J]. NATURE REVIEWS MICROBIOLOGY, 2015, 13 (01) : 42 - 51
  • [9] BLAST plus : architecture and applications
    Camacho, Christiam
    Coulouris, George
    Avagyan, Vahram
    Ma, Ning
    Papadopoulos, Jason
    Bealer, Kevin
    Madden, Thomas L.
    [J]. BMC BIOINFORMATICS, 2009, 10
  • [10] Bacteriocin Occurrence and Activity in Escherichia coli Isolated from Bovines and Wastewater
    Cameron, Andrew
    Zaheer, Rahat
    Adator, Emelia H.
    Barbieri, Ruth
    Reuter, Tim
    McAllister, Tim A.
    [J]. TOXINS, 2019, 11 (08)