BASIC REPRODUCTION RATIOS FOR TIME-PERIODIC HOMOGENEOUS EVOLUTION SYSTEMS

被引:4
作者
Wang, Feng-Bin [1 ,2 ,3 ]
Zhang, Lei [4 ]
Zhao, Xiao-Qiang [5 ]
机构
[1] Chang Gung Univ, Dept Nat Sci, Ctr Gen Educ, Taoyuan 333, Taiwan
[2] Chang Gung Mem Hosp, Community Med Res Ctr, Keelung Branch, Keelung 204, Taiwan
[3] Natl Taiwan Univ, Natl Ctr Theoret Sci, Taipei 106, Taiwan
[4] Shaanxi Normal Univ, Sch Math & Stat, Xian 710119, Shaanxi, Peoples R China
[5] Mem Univ Newfoundland, Dept Math & Stat, St John, NF A1C 5S7, Canada
基金
中国国家自然科学基金; 加拿大自然科学与工程研究理事会;
关键词
basic reproduction ratio; homogeneous operators; time-periodic systems; threshold dynamics; COMPARTMENTAL-MODELS; SPATIAL VARIATION; INTERNAL STORAGE; COMPETITION; GROWTH; DYNAMICS; NUTRIENT; EIGENVALUE; THRESHOLD; EQUATIONS;
D O I
10.1137/22M1531865
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is devoted to the study of basic reproduction ratios R-0 for time-periodic homogeneous evolution systems. We introduce the definition of R-0 and show that the sign of R-0-1 determines the stability of the zero solution for such a system. We also characterize R-0 and give a numerical method to compute it. Then we apply the developed theory to two population models and obtain threshold type results on their global dynamics in terms of R-0.
引用
收藏
页码:1806 / 1831
页数:26
相关论文
共 59 条
[1]   FIXED-POINT EQUATIONS AND NONLINEAR EIGENVALUE PROBLEMS IN ORDERED BANACH-SPACES [J].
AMANN, H .
SIAM REVIEW, 1976, 18 (04) :620-709
[2]  
[Anonymous], 2011, Dynamical Systems and Population Persistence, DOI [10.1090/gsm/118, DOI 10.1090/GSM/118]
[3]   The epidemic threshold of vector-borne diseases with seasonality [J].
Bacaer, Nicolas ;
Guernaoui, Souad .
JOURNAL OF MATHEMATICAL BIOLOGY, 2006, 53 (03) :421-436
[4]   On the biological interpretation of a definition for the parameter R0 in periodic population models [J].
Bacaer, Nicolas ;
Dads, El Hadi Ait .
JOURNAL OF MATHEMATICAL BIOLOGY, 2012, 65 (04) :601-621
[5]   Genealogy with seasonality, the basic reproduction number, and the influenza pandemic [J].
Bacaer, Nicolas ;
Dads, El Hadi Ait .
JOURNAL OF MATHEMATICAL BIOLOGY, 2011, 62 (05) :741-762
[6]   Threshold dynamics of a nonlocal and time-delayed West Nile virus model with seasonality [J].
Bai, Zhenguo ;
Zhao, Xiao-Qiang .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2022, 115
[7]  
Ballyk M, 2008, LECT NOTES MATH, V1936, P265
[8]  
Ballyk M, 1998, SIAM J APPL MATH, V59, P573
[9]   Nonlinear extensions of the Perron-Frobenius theorem and the Krein-Rutman theorem [J].
Chang, K. C. .
JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2014, 15 (02) :433-457
[10]   TIME-LAG AND CO-OPERATIVITY IN THE TRANSIENT GROWTH DYNAMICS OF MICROALGAE [J].
CUNNINGHAM, A ;
NISBET, RM .
JOURNAL OF THEORETICAL BIOLOGY, 1980, 84 (02) :189-203