The usefulness of machine learning-based evaluation of clinical and pretreatment 18FFDG-PET/CT radiomic features for predicting prognosis in patients with gallbladder cancer

被引:0
|
作者
Nakajo, Masatoyo [1 ]
Jinguji, Megumi [1 ]
Hirahara, Mitsuho [1 ]
Tani, Atsushi [1 ]
Yoshiura, Takashi [1 ]
机构
[1] Kagoshima Univ, Grad Sch Med & Dent Sci, Dept Radiol, Kagoshima, Japan
关键词
D O I
暂无
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
P78
引用
收藏
页数:3
相关论文
共 50 条
  • [41] Multi-center evaluation of machine learning-based radiomic model in predicting disease free survival and adjuvant chemotherapy benefit in stage II colorectal cancer patients
    Hui Zhu
    Muni Hu
    Yanru Ma
    Xun Yao
    Xiaozhu Lin
    Menglei Li
    Yue Li
    Zhiyuan Wu
    Debing Shi
    Tong Tong
    Haoyan Chen
    Cancer Imaging, 23
  • [42] Clinical evaluation on image quality of a deep learning-based denoising algorithm in 18yF-FDG PET/CT studies
    Xing, Yan
    Qiao, Wenli
    Wang, Taisong
    Wang, Ying
    Li, Chenwei
    Lv, Yang
    Xi, Chen
    Liao, Shu
    Qian, Zheng
    Zhao, Jinhua
    JOURNAL OF NUCLEAR MEDICINE, 2021, 62
  • [43] Composite Pretreatment CT and 18F-FDG PET Radiomic-Based Prediction of Pathological Response of Rectal Cancer Patients Treated with Neoadjuvant Chemoradiotherapy
    Yuan, Z. M.
    Zhang, G. G.
    Latifi, K.
    Moros, E. G.
    Felder, S.
    Sanchez, J.
    Dessureault, S.
    Imanirad, I.
    Kim, R.
    Harrison, L. B.
    Hoffe, S.
    Frakes, J. M.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2019, 105 (01): : E177 - E177
  • [44] Insights into a Machine Learning-Based Palmitoylation-Related Gene Model for Predicting the Prognosis and Treatment Response of Breast Cancer Patients
    Zhu, Hongxia
    Hu, Haihong
    Hao, Bo
    Zhan, Wendi
    Yan, Ting
    Zhang, Jingdi
    Wang, Siyu
    Hu, Hongjuan
    Zhang, Taolan
    TECHNOLOGY IN CANCER RESEARCH & TREATMENT, 2024, 23
  • [45] Development and validation of machine learning models for predicting no. 253 lymph node metastasis in left-sided colorectal cancer using clinical and CT-based radiomic features
    Hongwei Zhang
    Kexin Wang
    Shurong Liu
    Guowei Chen
    Yong Jiang
    Yingchao Wu
    Xiaocong Pang
    Xiaoying Wang
    Junling Zhang
    Xin Wang
    Cancer Imaging, 25 (1)
  • [46] Machine Learning-based classification using 18F-FDG PET-derived quantitative parameters in predicting Endometrial Cancer aggressiveness
    Bezzi, C.
    Mapelli, P.
    Mathoux, G.
    Monaco, L.
    Ghezzo, S.
    Bergamini, A.
    Fallanca, F.
    Gajate, A. M. Samanes
    Vasta, F.
    Candotti, G.
    Taccagni, G. L.
    Mangili, G.
    Gianolli, L.
    Picchio, M.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2022, 49 (SUPPL 1) : S244 - S244
  • [47] Ability of models based on clinical parameters and radiomic features from 18F-FDG PET/CT to differentiate breast carcinoma from breast lymphoma using machine-learning approach
    Ou, X.
    Zhang, J.
    Wang, J.
    Pang, F.
    Ma, X.
    BREAST, 2019, 44 : S49 - S49
  • [48] Machine learning model based on preoperative contrast-enhanced CT and clinical features to predict perineural invasion in gallbladder carcinoma patients
    Liu, Hengchao
    Tang, Zhenqi
    Feng, Xue
    Cheng, Yali
    Chen, Chen
    Zhang, Dong
    Lei, Jianjun
    Geng, Zhimin
    Li, Qi
    EJSO, 2025, 51 (05):
  • [49] MACHINE LEARNING-BASED CONSTRUCTION AND VALIDATION OF A 68GA-PSMA PET/CT RADIOMICS MODEL FOR PREDICTING ISUP GRADING IN PROSTATE CANCER
    Zhang, Honghu
    Tang, Yongxiang
    Qi, Lin
    Chen, Minfeng
    Gao, Xiaomei
    Hu, Shuo
    Cai, Yi
    JOURNAL OF UROLOGY, 2024, 211 (05): : E1199 - E1199
  • [50] Radiomic signatures based on pretreatment 18F-FDG PET/CT, combined with clinicopathological characteristics, as early prognostic biomarkers among patients with invasive breast cancer
    Jia, Tongtong
    Lv, Qingfu
    Cai, Xiaowei
    Ge, Shushan
    Sang, Shibiao
    Zhang, Bin
    Yu, Chunjing
    Deng, Shengming
    FRONTIERS IN ONCOLOGY, 2023, 13