The usefulness of machine learning-based evaluation of clinical and pretreatment 18FFDG-PET/CT radiomic features for predicting prognosis in patients with gallbladder cancer

被引:0
|
作者
Nakajo, Masatoyo [1 ]
Jinguji, Megumi [1 ]
Hirahara, Mitsuho [1 ]
Tani, Atsushi [1 ]
Yoshiura, Takashi [1 ]
机构
[1] Kagoshima Univ, Grad Sch Med & Dent Sci, Dept Radiol, Kagoshima, Japan
关键词
D O I
暂无
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
P78
引用
收藏
页数:3
相关论文
共 50 条
  • [31] Development and validation of a machine learning-based nomogram for predicting prognosis in lung cancer patients with malignant pleural effusion
    Hu, Xin
    Zhao, Shiqiao
    Li, Yanlun
    Heibi, Yiluo
    Wu, Hang
    Jiang, Yongjie
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [32] Machine learning approach using 18F-FDG-PET-radiomic features and the visibility of right ventricle 18F-FDG uptake for predicting clinical events in patients with cardiac sarcoidosis
    Nakajo, Masatoyo
    Hirahara, Daisuke
    Jinguji, Megumi
    Ojima, Satoko
    Hirahara, Mitsuho
    Tani, Atsushi
    Takumi, Koji
    Kamimura, Kiyohisa
    Ohishi, Mitsuru
    Yoshiura, Takashi
    JAPANESE JOURNAL OF RADIOLOGY, 2024, 42 (07) : 744 - 752
  • [33] Clinical evaluation of sumSUVmax on pretreatment 18F-FDG PET/CT in small cell lung cancer patients
    Xu, Xianhai
    Wu, Ping
    Zhu, Junyan
    Wu, Zhifang
    Li, Sijin
    JOURNAL OF NUCLEAR MEDICINE, 2018, 59
  • [34] Machine learning-based radiomic, clinical and semantic feature analysis for predicting overall survival and MGMT promoter methylation status in patients with glioblastoma
    Lu, Yiping
    Patel, Markand
    Natarajan, Kal
    Ughratdar, Ismail
    Sanghera, Paul
    Jena, Raj
    Watts, Colin
    Sawlani, Vijay
    MAGNETIC RESONANCE IMAGING, 2020, 74 : 161 - 170
  • [35] Predicting Neoadjuvant Treatment Response in Rectal Cancer Using Machine Learning: Evaluation of MRI-Based Radiomic and Clinical Models
    Kent J. Peterson
    Matthew T. Simpson
    Melissa K. Drezdzon
    Aniko Szabo
    Robin A. Ausman
    Andrew S. Nencka
    Paul M. Knechtges
    Carrie Y. Peterson
    Kirk A. Ludwig
    Timothy J. Ridolfi
    Journal of Gastrointestinal Surgery, 2023, 27 : 122 - 130
  • [36] Predicting Neoadjuvant Treatment Response in Rectal Cancer Using Machine Learning: Evaluation of MRI-Based Radiomic and Clinical Models
    Peterson, Kent J.
    Simpson, Matthew T.
    Drezdzon, Melissa K.
    Szabo, Aniko
    Ausman, Robin A.
    Nencka, Andrew S.
    Knechtges, Paul M.
    Peterson, Carrie Y.
    Ludwig, Kirk A.
    Ridolfi, Timothy J.
    JOURNAL OF GASTROINTESTINAL SURGERY, 2023, 27 (01) : 122 - 130
  • [37] Robustness of radiomic features in supervised machine learning prediction models of survival using varying segmentation methods in [18F]FDG PET/CT in patients with pancreatic and esophageal cancer
    Nakuz, Thomas
    Papp, Laszlo
    Raidl, Markus
    Grahovac, Marko
    Haug, Alexander
    Hacker, Marcus
    Karanikas, Georgios
    JOURNAL OF NUCLEAR MEDICINE, 2019, 60
  • [38] Clinical, Conventional CT and Radiomic Feature-Based Machine Learning Models for Predicting ALK Rearrangement Status in Lung Adenocarcinoma Patients
    Song, Lan
    Zhu, Zhenchen
    Mao, Li
    Li, Xiuli
    Han, Wei
    Du, Huayang
    Wu, Huanwen
    Song, Wei
    Jin, Zhengyu
    FRONTIERS IN ONCOLOGY, 2020, 10
  • [39] Predicting severe radiation-induced oral mucositis in head and neck cancer patients using integrated baseline CT radiomic, dosimetry, and clinical features: A machine learning approach
    Agheli, Razieh
    Siavashpour, Zahra
    Reiazi, Reza
    Azghandi, Samira
    Cheraghi, Susan
    Paydar, Reza
    HELIYON, 2024, 10 (03)
  • [40] Multi-center evaluation of machine learning-based radiomic model in predicting disease free survival and adjuvant chemotherapy benefit in stage II colorectal cancer patients
    Zhu, Hui
    Hu, Muni
    Ma, Yanru
    Yao, Xun
    Lin, Xiaozhu
    Li, Menglei
    Li, Yue
    Wu, Zhiyuan
    Shi, Debing
    Tong, Tong
    Chen, Haoyan
    CANCER IMAGING, 2023, 23 (01)