Molecular Engineering of Anthracene Core-Based Hole-Transporting Materials for Organic and Perovskite Photovoltaics

被引:22
作者
Shafiq, Aaida [1 ]
Adnan, Muhammad [2 ]
Hussain, Riaz [1 ]
Irshad, Zobia [2 ]
Farooq, Umar [3 ]
Muhammad, Shabbir [4 ]
机构
[1] Univ Okara, Dept Chem, Okara 56300, Pakistan
[2] Chungnam Natl Univ, Grad Sch Energy Sci & Technol, Daejeon 34134, South Korea
[3] Univ Punjab, Sch Chem, Lahore 54590, Pakistan
[4] King Khalid Univ, Dept Chem, Coll Sci, Abha 61413, Saudi Arabia
关键词
SOLAR-CELLS; ACCEPTOR MOLECULES; DOPANT-FREE; EFFICIENT; DONORS; FUNCTIONALS; CHEMISTRY; DESIGN;
D O I
10.1021/acsomega.3c03790
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Anthracene core-based hole-transporting material containing TIPs (triisopropylsilylacetylene) has been spotlighted as potential donors for perovskite solar cells (SCs) due to their appropriate energy levels, efficient hole transport capacity, high stability, and high power conversion efficiency. Herein, we have efficiently designed seven new highly conjugated A-B-D-C-D molecules (AS1-AS7) containing an anthracene core. We used end-capped modifications of donor units with acceptor units on one side and then theoretically characterized them for their appropriate use for SC applications. Modern quantum chemistry techniques have theoretically described the R (reference molecule) and developed (AS1-AS7) molecules. Moreover, the proposed (AS1-AS7) molecules are explored with density functional theory (DFT) and time-dependent density functional theory (TD-DFT) employing B3LYP/6-31G(d,p), and numerous parameters like photovoltaic, optical and electronic characteristics, frontier molecular orbital, excitation, binding and reorganization (lambda(e) and lambda(h)) energies, open circuit voltage, light harvesting efficiency, transition density matrix, fill factor, and the density of states have been studied. End-capped modification causes a smaller band gap between the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO), higher UV-vis absorption maxima, tuned energy levels, lower binding and reorganizational (lambda(e) and lambda(h)) energies, and larger V-oc values in proposed (AS1-AS7) molecules than R. AS5 has a remarkable absorption maximum of 495.94 nm and a narrow optimal energy gap (E-g) of 1.46 eV. Furthermore, a complex study of AS5:PC61BM has revealed extraordinary charge shifting at the HOMO (AS5)-LUMO (PC61BM) interface. Our results suggested that newly developed anthracene core-based compounds (AS1-AS7) would be effective candidates with excellent photovoltaic and optoelectronic properties and could be employed in future organic and perovskite SC applications.
引用
收藏
页码:35937 / 35955
页数:19
相关论文
共 85 条
[1]   An optoelectronic study to design better benzodithiophene (BDT) donor unit based non-fullerene organic solar cells (OSCs): the DFT approaches [J].
Abbas, Faheem ;
Ali, Usman ;
Tallat, Aqsa ;
Ahmad, Hafiz Muhammad Rizwan ;
Siddique, Sabir Ali ;
Zeb, Zonish ;
Siddique, Muhammad Bilal Ahmed .
CHEMICAL PAPERS, 2022, 76 (08) :4977-4987
[2]   Spirofluorene based small molecules as an alternative to traditional non-fullerene acceptors for organic solar cells [J].
Abbas, Mazhar ;
Ali, Usman ;
Faizan, Muhammad ;
Siddique, Muhammad Bilal Ahmed .
OPTICAL AND QUANTUM ELECTRONICS, 2021, 53 (05)
[3]   Exchange functionals with improved long-range behavior and adiabatic connection methods without adjustable parameters:: The mPW and mPW1PW models [J].
Adamo, C ;
Barone, V .
JOURNAL OF CHEMICAL PHYSICS, 1998, 108 (02) :664-675
[4]   Efficient ternary active layer materials for organic photovoltaics [J].
Adnan, Muhammad ;
Irshad, Zobia ;
Hussain, Riaz ;
Lee, Wonjong ;
Kim, Min ;
Lim, Jongchul .
SOLAR ENERGY, 2023, 257 :324-343
[5]   Influence of end-capped engineering on 3-dimenional star-shaped triphenylamine-based donor materials for efficient organic solar cells [J].
Adnan, Muhammad ;
Irshad, Zobia ;
Hussain, Riaz ;
Lee, Wonjong ;
Yang, Jung Yup ;
Lim, Jongchul .
ARABIAN JOURNAL OF CHEMISTRY, 2023, 16 (06)
[6]   Banana-Shaped Nonfullerene Acceptor Molecules for Highly Stable and Efficient Organic Solar Cells [J].
Adnan, Muhammad ;
Mehboob, Muhammad Yasir ;
Hussain, Riaz ;
Irshad, Zobia .
ENERGY & FUELS, 2021, 35 (14) :11496-11506
[7]   In silico designing of efficient C-shape non-fullerene acceptor molecules having quinoid structure with remarkable photovoltaic properties for high-performance organic solar cells [J].
Adnan, Muhammad ;
Mehboob, Muhammad Yasir ;
Hussain, Riaz ;
Irshad, Zobia .
OPTIK, 2021, 241
[8]   Facile all-dip-coating deposition of highly efficient (CH3)3NPbI3-xClxperovskite materials from aqueous non-halide lead precursor [J].
Adnan, Muhammad ;
Irshad, Zobia ;
Lee, Jae Kwan .
RSC ADVANCES, 2020, 10 (48) :29010-29017
[9]   Highly efficient planar heterojunction perovskite solar cells with sequentially dip-coated deposited perovskite layers from a non-halide aqueous lead precursor [J].
Adnan, Muhammad ;
Lee, Jae Kwan .
RSC ADVANCES, 2020, 10 (09) :5454-5461
[10]   All Sequential Dip-Coating Processed Perovskite Layers from an Aqueous Lead Precursor for High Efficiency Perovskite Solar Cells [J].
Adnan, Muhammad ;
Lee, Jae Kwan .
SCIENTIFIC REPORTS, 2018, 8