Vanillin: An Effective Additive to Improve the Longevity of Zn Metal Anode in a 30 m ZnCl2 Electrolyte

被引:37
作者
Hoang, David [1 ]
Li, Yaqiong [2 ]
Jung, Min Soo [1 ,3 ]
Sandstrom, Sean K. [1 ]
Scida, Alexis M. [1 ]
Jiang, Heng [1 ]
Gallagher, Trenton C. [1 ]
Pollard, Brenden A. [1 ]
Jensen, Rachel [1 ]
Chiu, Nan-Chieh [1 ]
Stylianou, Kyriakos [1 ]
Stickle, William F. [4 ]
Greaney, P. Alex [2 ]
Ji, Xiulei [1 ]
机构
[1] Oregon State Univ, Dept Chem, Corvallis, OR 97331 USA
[2] Univ Calif Riverside, Dept Mat Sci & Engn, Riverside, CA 92521 USA
[3] Seoul Natl Univ, Inst Chem Proc, Sch Chem & Biol Engn, Seoul 08826, South Korea
[4] Hewlett Packard Corp, 1000 NE Circle Blvd, Corvallis, OR 97330 USA
关键词
Coulombic efficiency; SEI; vanillin; ZnCl2; Zn metal anodes; ZINC-ION BATTERIES; CORROSION; SUPPRESSION;
D O I
10.1002/aenm.202301712
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
It remains a challenge to design aqueous electrolytes to secure the complete reversibility of zinc metal anodes. The concentrated water-in-salt electrolytes, e.g., 30 m ZnCl2, are promising candidates to address the challenges of the Zn metal anode. However, the pure 30 m ZnCl2 electrolyte fails to deliver a smooth surface morphology and a practically relevant Coulombic efficiency. Herein, it is reported that a small concentration of vanillin, 5 mg mL(water)(-1), added to 30 m ZnCl2 transforms the reversibility of Zn metal anode by eliminating dendrites, lowering the Hammett acidity, and forming an effective solid electrolyte interphase. The presence of vanillin in the electrolyte enables the Zn metal anode to exhibit a high Coulombic efficiency of 99.34% at a low current density of 0.2 mA cm(-2), at which the impacts of the hydrogen evolution reaction are allowed to play out. Using this new electrolyte, a full cell Zn metal battery with an anode/cathode capacity (N/P) ratio of 2:1 demonstrates no capacity fading over 800 cycles.
引用
收藏
页数:8
相关论文
共 43 条
[1]   Accurate Determination of Coulombic Efficiency for Lithium Metal Anodes and Lithium Metal Batteries [J].
Adams, Brian D. ;
Zheng, Jianming ;
Ren, Xiaodi ;
Xu, Wu ;
Zhang, Ji-Guang .
ADVANCED ENERGY MATERIALS, 2018, 8 (07)
[2]   Gabedit-A Graphical User Interface for Computational Chemistry Softwares [J].
Allouche, Abdul-Rahman .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2011, 32 (01) :174-182
[3]   Silicon oxides for Li-ion battery anode applications: Toward long-term cycling stability [J].
Ashuri, Maziar ;
He, Qianran ;
Shaw, Leon L. .
JOURNAL OF POWER SOURCES, 2023, 559
[4]   Effect of Vanillin to Prevent the Dendrite Growth of Zn in Zinc-Based Secondary Batteries [J].
Azhagurajan, Mukkannan ;
Nakata, Akiyoshi ;
Arai, Hajime ;
Ogumi, Zempachi ;
Kajita, Tetsuya ;
Itoh, Takashi ;
Itaya, Kingo .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2017, 164 (12) :A2407-A2417
[5]   Interfacial parasitic reactions of zinc anodes in zinc ion batteries: Underestimated corrosion and hydrogen evolution reactions and their suppression strategies [J].
Bayaguud, Aruuhan ;
Fu, Yanpeng ;
Zhu, Changbao .
JOURNAL OF ENERGY CHEMISTRY, 2022, 64 (246-262) :246-262
[6]   IMPROVED TETRAHEDRON METHOD FOR BRILLOUIN-ZONE INTEGRATIONS [J].
BLOCHL, PE ;
JEPSEN, O ;
ANDERSEN, OK .
PHYSICAL REVIEW B, 1994, 49 (23) :16223-16233
[7]   Fluorinated interphase enables reversible aqueous zinc battery chemistries [J].
Cao, Longsheng ;
Li, Dan ;
Pollard, Travis ;
Deng, Tao ;
Zhang, Bao ;
Yang, Chongyin ;
Chen, Long ;
Vatamanu, Jenel ;
Hu, Enyuan ;
Hourwitz, Matt J. ;
Ma, Lin ;
Ding, Michael ;
Li, Qin ;
Hou, Singyuk ;
Gaskell, Karen ;
Fourkas, John T. ;
Yang, Xiao-Qing ;
Xu, Kang ;
Borodin, Oleg ;
Wang, Chunsheng .
NATURE NANOTECHNOLOGY, 2021, 16 (08) :902-+
[8]   Non-concentrated aqueous electrolytes with organic solvent additives for stable zinc batteries†‡ [J].
Dong, Yang ;
Miao, Licheng ;
Ma, Guoqiang ;
Di, Shengli ;
Wang, Yuanyuan ;
Wang, Liubin ;
Xu, Jianzhong ;
Zhang, Ning .
CHEMICAL SCIENCE, 2021, 12 (16) :5843-5852
[9]   ACIDIC NATURE OF METAL AQUO COMPLEXES - PROTON-TRANSFER EQUILIBRIA IN CONCENTRATED AQUEOUS-MEDIA [J].
DUFFY, JA ;
INGRAM, MD .
INORGANIC CHEMISTRY, 1978, 17 (10) :2798-2802
[10]   Electrical Energy Storage for the Grid: A Battery of Choices [J].
Dunn, Bruce ;
Kamath, Haresh ;
Tarascon, Jean-Marie .
SCIENCE, 2011, 334 (6058) :928-935