Periodic linear groups in which permutability is a transitive relation

被引:3
作者
Ferrara, Maria [1 ]
Trombetti, Marco [2 ]
机构
[1] Univ Campania Luigi Vanvitelli, Dipartimento Matemat & Fis, Viale Lincoln 5, Caserta, Italy
[2] Univ Napoli Federico II, Complesso Univ Monte S Angelo, Dipartimento Matemat & Applicazioni Renato Caccio, Via Cintia, Naples, Italy
关键词
Linear group; PT-group; Fusion theory; Pronormal subgroup; Graph; INFINITE GROUPS; FINITE-GROUPS; SUBGROUPS;
D O I
10.1007/s10231-023-01367-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A PT-group is a group in which the relation of being a permutable subgroup is transitive. The main aim of this paper is to show that a (homomorphic image of a) periodic linear group is a soluble PT-group if and only if each subgroup of a Sylow subgroup is permutable in the corresponding Sylow normalizer (see Theorem 4.7); for a fixed prime p, the latter condition is denoted by X-p. In order to prove our main theorem, we need (i) to characterize (homomorphic images of) periodic linear groups that are PT-groups (see Sect. 2), (ii) to develop a fusion theory for locally finite groups (see Sect. 3), (iii) to carefully study (homomorphic images of) periodic linear groups with the property X-p for a fixed prime p (see for instance Theorem 4.6). As a by-product we obtain (among other results) a characterization of (homomorphic images of) periodic linear X-p-groups in terms of pronormality (see Theorem 4.11) that will allow us to show that, on some occasions, the property X-p is inherited by subgroups.
引用
收藏
页码:361 / 383
页数:23
相关论文
共 30 条
[1]   On periodic radical groups in which permutability is a transitive relation [J].
Ballester-Bolinches, A. ;
Kurdachenko, L. A. ;
Pedraza, Tatiana .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2007, 210 (03) :665-671
[2]   Sylow permutable subnormal subgroups of finite groups [J].
Ballester-Bolinches, A ;
Esteban-Romero, R .
JOURNAL OF ALGEBRA, 2002, 251 (02) :727-738
[3]   On a graph related to permutability in finite groups [J].
Ballester-Bolinches, A. ;
Cossey, John ;
Esteban-Romero, R. .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2010, 189 (04) :567-570
[4]   Infinite groups with many permutable subgroups [J].
Ballester-Bolinches, A. ;
Kurdachenko, L. A. ;
Otal, J. ;
Pedraza, T. .
REVISTA MATEMATICA IBEROAMERICANA, 2008, 24 (03) :745-764
[5]  
Ballester-Bolinches A., 2012, BIBL REV MAT IBEROAM, P13
[6]   Local characterizations of infinite groups whose ascendant subgroups are permutable [J].
Ballester-Bolinches, Adolfo ;
Kurdachenko, Leonid A. ;
Otal, Javier ;
Pedraza, Tatiana .
FORUM MATHEMATICUM, 2010, 22 (01) :187-201
[7]   Infinite groups with Sylow permutable subgroups [J].
Ballester-Bolinches, Adolfo ;
Kurdachenko, Leonid A. ;
Otal, Javier ;
Pedraza, Tatiana .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2010, 189 (04) :553-565
[8]   Criteria for permutability to be transitive in finite groups [J].
Beidleman, JC ;
Brewster, B ;
Robinson, DJS .
JOURNAL OF ALGEBRA, 1999, 222 (02) :400-412
[9]   Subnormality in linear groups [J].
de Giovanni, F. ;
Trombetti, M. ;
Wehrfritz, B. A. F. .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2023, 227 (02)
[10]  
de Giovanni F., IN PRESS