Effect of variable cross-section electrode on the battery performance of all-vanadium redox flow battery

被引:16
|
作者
Liu, Xi [1 ]
Zhang, Pengfei [1 ]
Yang, Jialin [2 ]
Li, Jing [1 ]
Chu, Fengming [1 ]
机构
[1] Beijing Univ Chem Technol, Coll Mech & Elect Engn, Beijing 1000291, Peoples R China
[2] State Grid Integrated Energy Serv Grp Co LTD, Beijing 100032, Peoples R China
基金
北京市自然科学基金;
关键词
Flow battery; Numerical model; Variable cross-section electrode; Battery performance; FIELD DESIGN; SCALE;
D O I
10.1016/j.ijheatmasstransfer.2023.124382
中图分类号
O414.1 [热力学];
学科分类号
摘要
The global warming can be relieved by the application of the renewable energy, which should be sup-ported by the large-scale energy storage such as the vanadium redox flow battery (VRFB). The charge-discharge reactions mainly take place in the porous electrodes, which can influence the battery per-formance. In the paper, a variable cross-section electrode with interdigital flow field was proposed to enhance the mass transfer in the porous electrode. The charge-discharge voltage, overpotential, concen-tration distribution and uniformity factors are predicted by a 3-D numerical model to evaluate the bat-tery performance of different electrodes (the Conventional electrode; Variable coss-section electrode #1: the variable coss-section electrode with the interdigital flow field distributed on one side; Variable coss-section electrode #2: the variable coss-section electrode with the interdigital flow field distributed on both sides). The discharging voltage of the variable coss-section electrode #2 was 1.25% higher than that of the variable coss-section electrode #1. The uniformity factor of the variable coss-section electrode #1 and the variable coss-section electrode #2 was 14.24% and 19.56% higher than that of the conventional electrode, respectively. Considering the machining process and promotion of the battery performance, the variable coss-section electrode#1 was the best design of the three battery models mentioned in this article.& COPY; 2023 Elsevier Ltd. All rights reserved.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] An All-Vanadium Redox Flow Battery: A Comprehensive Equivalent Circuit Model
    Yesilyurt, Muhammed Samil
    Yavasoglu, Huseyin Ayhan
    ENERGIES, 2023, 16 (04)
  • [2] Comprehensive Analysis of Critical Issues in All-Vanadium Redox Flow Battery
    Huang, Zebo
    Mu, Anle
    Wu, Longxing
    Yang, Bin
    Qian, Ye
    Wang, Jiahui
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2022, 10 (24) : 7786 - 7810
  • [3] Effect of Electrode Properties on Performance of Miniaturized Vanadium Redox Flow Battery
    Pinjari, N.
    Kumar, B.
    Bhargav, A.
    Ruch, P.
    PROCEEDINGS OF THE 2017 SIXTEENTH IEEE INTERSOCIETY CONFERENCE ON THERMAL AND THERMOMECHANICAL PHENOMENA IN ELECTRONIC SYSTEMS ITHERM 2017, 2017, : 1040 - 1047
  • [4] Dynamic modelling of hydrogen evolution effects in the all-vanadium redox flow battery
    Shah, A. A.
    Al-Fetlawi, H.
    Walsh, F. C.
    ELECTROCHIMICA ACTA, 2010, 55 (03) : 1125 - 1139
  • [5] A Novel Biomimetic Lung-Shaped Flow Field for All-Vanadium Redox Flow Battery
    Zhong, Longchun
    Chu, Fengming
    SUSTAINABILITY, 2023, 15 (18)
  • [6] Performance improvement of a vanadium redox flow battery with asymmetric electrode designs
    Lu, Meng-Yue
    Yang, Wei-Wei
    Bai, Xiao-Shuai
    Deng, Yi-Ming
    He, Ya-Ling
    ELECTROCHIMICA ACTA, 2019, 319 : 210 - 226
  • [7] Numerical examination of the performance of a vanadium redox flow battery under variable operating strategies
    Yang, W. W.
    Bai, X. S.
    Zhang, W. Y.
    Lu, M. Y.
    Xu, Q.
    JOURNAL OF POWER SOURCES, 2020, 457
  • [8] Effect of Baffles in Flow Channel on the Performance of Vanadium Redox Flow Battery
    Wu, Horng-Wen
    Zeng, Yi-Kai
    PROCESSES, 2023, 11 (02)
  • [9] Review-Highlights of UNSW All-Vanadium Redox Battery Development: 1983 to Present
    Skyllas-Kazacos, Maria
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2022, 169 (07)
  • [10] Performance of a vanadium redox flow battery with a VANADion membrane
    Zhou, X. L.
    Zhao, T. S.
    An, L.
    Zeng, Y. K.
    Zhu, X. B.
    APPLIED ENERGY, 2016, 180 : 353 - 359