Three solutions for a three-point boundary value problem with instantaneous and non-instantaneous impulses

被引:2
作者
Zhang, Huiping [1 ]
Yao, Wangjin [2 ]
机构
[1] Fujian Normal Univ, Sch Math & Stat, Fuzhou 350117, Peoples R China
[2] Putian Univ, Fujian Key Lab Financial Informat Proc, Putian 351100, Peoples R China
来源
AIMS MATHEMATICS | 2023年 / 8卷 / 09期
关键词
three-point boundary value problem; variational method; critical points theorem; instantaneous impulse; non-instantaneous impulse; NONLINEAR DIFFERENTIAL-EQUATIONS; VARIATIONAL-METHODS; MULTIPLE SOLUTIONS; EXISTENCE; STABILITY; SYSTEMS;
D O I
10.3934/math.20231086
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the multiplicity of solutions for the following three-point boundary value problem of second-order p-Laplacian differential equations with instantaneous and non-instantaneous impulses: ⎪ ⎪⎪⎪⎪⎪⎪⎧ ⎨ ⎪⎪ ⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ -(& rho;(t)& phi;p(u'(t)))' + g(t)& phi;p(u(t)) = & lambda;fj(t,u(t)), t E (sj, tj+1], j = 0, 1, ..., m, & UDelta;(& rho;(tj)& phi;p(u'(tj))) = & mu;Ij(u(tj)), j = 1, 2, ..., m, & rho;(t)& phi;p(u'(t)) = & rho;(t+ j )& phi;p(u'(t+ j )), t E (tj, sj], j = 1, 2, ..., m, & rho;(s+ j )& phi;p(u'(s+ j )) = & rho;(s-j)& phi;p(u'(s-j )), j = 1, 2, ..., m, u(0) = 0, u(1) = & zeta;u(& eta;), where & phi;p(u) := |u|p-2u, p > 1, 0 = s0 < t1 < s1 < t2 < ... < sm1 < tm1+1 = & eta; < ... < sm < tm+1 = 1, & zeta; > 0, 0 < & eta; < 1, & UDelta;(& rho;(tj)& phi;p(u'(tj))) = & rho;(t+j)& phi;p(u'(t+j))-& rho;(t-j)& phi;p(u'(t-j )) for u'(t & PLUSMN;j) = lim u'(t), j = 1, 2, ..., m, t & RARR;t & PLUSMN;j and f j E C((sj, tj+1] xR, R), Ij E C(R, R). & lambda; E (0, +& INFIN;), & mu; E R are two parameters. & rho;(t) & GE; 1, 1 & LE; g(t) & LE; c for t E (sj, tj+1], & rho;(t), g(t) E Lp[0,1], and c is a positive constant. By using variational methods and the critical points theorems of Bonanno-Marano and Ricceri, the existence of at least three classical solutions is obtained. In addition, several examples are presented to illustrate our main results.
引用
收藏
页码:21312 / 21328
页数:17
相关论文
共 39 条
[1]   On the existence of multiple solutions for a three-point nonlinear boundary value problem of p-Laplacian type [J].
Abaspour, S. ;
Khademloo, S. ;
Rasouli, S. H. .
AFRIKA MATEMATIKA, 2020, 31 (02) :305-313
[2]   Stability by Lyapunov like functions of nonlinear differential equations with non-instantaneous impulses [J].
Agarwal, Ravi ;
O'Regan, D. ;
Hristova, S. .
JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2017, 53 (1-2) :147-168
[3]   On the Existence and Stability of a Neutral Stochastic Fractional Differential System [J].
Ahmad, Manzoor ;
Zada, Akbar ;
Ghaderi, Mehran ;
George, Reny ;
Rezapour, Shahram .
FRACTAL AND FRACTIONAL, 2022, 6 (04)
[4]  
[Anonymous], 1978, Journes dAnalyse Non Linaire, DOI DOI 10.1007/BFB0061807
[5]   On the structure of the critical set of non-differentiable functions with a weak compactness condition [J].
Bonanno, Gabriele ;
Marano, Salvatore A. .
APPLICABLE ANALYSIS, 2010, 89 (01) :1-10
[6]   New results for perturbed Hamiltonian systems with impulses [J].
Chen, Huiwen ;
He, Zhimin .
APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (18) :9489-9497
[7]   Nonlinear boundary value problem of first order impulsive functional differential equations [J].
Chen, LJ ;
Sun, JT .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 318 (02) :726-741
[8]   Existence of solutions for a second-order differential equation with non-instantaneous impulses and delay [J].
Colao, Vittorio ;
Muglia, Luigi ;
Xu, Hong-Kun .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2016, 195 (03) :697-716
[9]   Dirichlet problems of fractional p-Laplacian equation with impulsive effects [J].
Fan, Xiaolin ;
Xue, Tingting ;
Jiang, Yongsheng .
MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2023, 20 (03) :5094-5116
[10]  
Hernández E, 2013, P AM MATH SOC, V141, P1641