Evaluation of AGM and FEM method for thermal radiation on nanofluid flow between two tubes in nearness of magnetism field

被引:10
作者
Alizadeh, As'ad [1 ]
Takami, Seyedeh Fatemeh Shahabi [2 ]
Iranmanesh, Reza [3 ]
Pasha, Pooya [4 ]
机构
[1] Cihan Univ Erbil, Coll Engn, Dept Civil Engn, Erbil, Iraq
[2] Iran Univ Sci & Technol Narmak, Dept Math, Pure Math, Analyt Tendency, Tehran 16846, Iran
[3] KN Toosi Univ Technol, Fac Civil Engn, Tehran 158754416, Iran
[4] Mazandaran Univ Sci & Technol, Dept Mech Engn, Babol, Iran
关键词
Thermal radiation; Nanofluid; Magnetism amplitude; AGM and FEM; MHD MICROPOLAR FLUID; HEAT-TRANSFER; NATURAL-CONVECTION; NUMERICAL-SIMULATION; STRETCHING SHEET; BROWNIAN-MOTION; MASS-TRANSFER; SEMI ANNULUS; CU-WATER; CAVITY;
D O I
10.1016/j.heliyon.2023.e16788
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The nanofluid flow through two orbicular cylinders is explored utilizing the overall Koo-Klein-streuer-Li (KKL) model within the nearness of a magnetic field. The impact of thermal radiation is considered in the energy equation. The novelty of this study is examining convective heat transfer for nanofluid flow between two flat tubes with the Akbari-Ganji method and Finite Element Techniques to examine the heat flux field by implies of 2D forms of temperature and velocity at unprecedented Reynolds numbers. The approaches for solving ODEs are AGM and FEM. Semi -analytical methods are assessed for specific parameters of aspect ratio, Hartmann number, Eck-ert number, and Reynolds quantity with various values. Adding Ha, Ec, and G causes the tem-perature gradient to grow, while adding the Reynolds number causes it to decrease. As the Lorentz forces increase, the velocity decreases; nevertheless, as the Reynolds number rises, the velocity decreases. With the reduction of the fluid's dynamic viscosity, the temperature will decrease, which will decrease the thermal trend along the vertical length of the pipes.
引用
收藏
页数:11
相关论文
共 48 条
[1]   Non-Newtonian nanofluid natural convective heat transfer in an inclined Half-annulus porous enclosure using FEM [J].
Aissa, Abderrahmane ;
Hatami, Mohammad ;
Medebber, M. A. ;
Haroun, Sahraoui ;
Ahmed, Sameh E. ;
Mohammed, Sahnoun .
ALEXANDRIA ENGINEERING JOURNAL, 2022, 61 (07) :5441-5453
[2]  
Alizadeh Asad., 2019, INT J MECH PRODUCTIO, V9, P1151
[3]   Nitrogen-doped carbon nanotubes for heat transfer applications [J].
Bazmi, Mohammad ;
Askari, Saeed ;
Ghasemy, Ebrahim ;
Rashidi, Alimorad ;
Ettefaghi, Ehsanollah .
JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2019, 138 (01) :69-79
[4]   Magnetic field effect on the unsteady natural convection in a right-angle trapezoidal cavity filled with a nanofluid Buongiorno's mathematical model [J].
Bondareva, N. S. ;
Sheremet, M. A. ;
Pop, I. .
INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2015, 25 (08) :1924-1946
[5]   Heatline visualization of MHD natural convection in an inclined wavy open porous cavity filled with a nanofluid with a local heater [J].
Bondareva, Nadezhda S. ;
Sheremet, Mikhail A. ;
Oztop, Hakan F. ;
Abu-Hamdeh, Nidal .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2016, 99 :872-881
[6]   A data-driven physics-informed neural network for predicting the viscosity of nanofluids [J].
Esfahani, Ilia Chiniforooshan .
AIP ADVANCES, 2023, 13 (02)
[7]  
Ferdosi SB., 2022, INT J SCI ENG APPL, V11, P151, DOI DOI 10.7753/IJSEA1111.1002
[8]   MHD boundary layer analysis for micropolar dusty fluid containing Hybrid nanoparticles (Cu Al2O3) over a porous medium [J].
Ghadikolaei, S. S. ;
Hosseinzadeh, Kh ;
Hatami, M. ;
Ganji, D. D. .
JOURNAL OF MOLECULAR LIQUIDS, 2018, 268 :813-823
[9]   Entropy generation in concentric annuli of 400 kV gas-insulated transmission line [J].
Hashemi-Tilehnoee, M. ;
Tashakor, S. ;
Dogonchi, A. S. ;
Seyyedi, Seyyed Masoud ;
Khaleghi, M. .
THERMAL SCIENCE AND ENGINEERING PROGRESS, 2020, 19
[10]   Nonlinear instability of two streaming-superposed magnetic Reiner-Rivlin Fluids by He-Laplace method [J].
He, Ji-Huan ;
Moatimid, Galal M. ;
Mostapha, Doaa R. .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2021, 895